Skip to main content
Log in

Similarity solutions for two-dimensional weak shock waves

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The general forms of self-similar solutions for two-dimensional weak shock waves in fluid dynamics are obtained. The functional form describing the area under the initial pulse is characterized under which the general system of PDEs admits similarity solutions. It is shown how one can construct new solutions with shock discontinuity from these self-similar solutions. In particular, a plane-wave solution is joined with a self-similar solution across a non-trivial shock. Furthermore, a new class of non-trivial simple wave solutions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olver PJ, Rosenau P (1987) Group-invariant solutions of differential equations. SIAM J Appl Math 47: 263–278

    Article  MATH  MathSciNet  Google Scholar 

  2. Bluman GW, Kumei S, Reid GJ (1988) New classes of symmetries of partial differential equations. J Math Phys 29: 806–811

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Lie S (1891) Vorlesungen uber differential gleichungen mit bekannten infinitesimalen transformationen GB Teuber, Leipzing (reprinted 1967 by Chelsea, New York)

  4. Bluman GW, Cole JD (1969) The general similarity solution of the heat equation. J Math Mech 18: 1025–1042

    MATH  MathSciNet  Google Scholar 

  5. Bluman GW, Cole JD (1974) Similarity methods for differential equations. Appl Math Sci no. 13. Springer-Verlag, New York

    Google Scholar 

  6. Ovsjannikov LV (1962) Group properties of differential equations (trans: Bluman GW of Gruppovye Svoystva Differentsialny Uravneni, Novosibirsk, USSR) (reprinted 1982 Group Analysis of Differential Equations, Academic Press, New York)

  7. Clarkson PA, Kruskal MD (1989) New similarity reductions of the Boussineq equations. J Math Phys 36: 2201–2213

    Article  MathSciNet  ADS  Google Scholar 

  8. Levi D, Winternitz P (1989) Non-classical symmetry reduction: example of the Boussinesq equation. J Phys A 22: 2915–2924

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Ibragimov, NH (eds) (1994) Handbook of Lie group analysis of differential equations. Volume 1: Symmetries, exact solutions and conservation laws. CRC Press, Boca Raton

    Google Scholar 

  10. Ibragimov, NH (eds) (1995) Handbook of Lie group analysis of differential equations. Volume 2: Applications in engineering and physical sciences. CRC Press, Boca Raton

    Google Scholar 

  11. Ibragimov, NH (eds) (1996) Handbook of Lie group analysis of differential equations. Volume 3: New trends in theoretical developments and computational methods. CRC Press, Boca Raton

    Google Scholar 

  12. Dauenhauer EC, Majdalani J (2003) Exact self-similarity solution of the Navier Stokes equations for a porous channel with orthogonally moving walls. Phys Fluids 15: 1485–1495

    Article  MathSciNet  ADS  Google Scholar 

  13. Galaktionov VA, Williams JF (2004) On very singular similarity solutions of a higher-order semilinear parabolic equation. Nonlinearity 17: 1075–1099

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Ludlow DK, Clarkson PA, Bassom AP (2000) New similarity solutions of the unsteady incompressible boundary-layer equations. Q J Mech Appl Math 53: 175–206

    Article  MATH  MathSciNet  Google Scholar 

  15. Sharma VD, Arora R (2005) Similarity solutions for strong shocks in an ideal gas. Stud Appl Math 114: 375–394

    Article  MATH  MathSciNet  Google Scholar 

  16. Nikitin AG, Boyko VM, Popovych RO (2001) In: Proceedings of the fourth international conference: symmetry in nonlinear mathematical physics, vol 43, Kyiv, Ukraine

  17. Fridman VE (1982) Self-refraction and small amplitude shock waves. Wave Motion 4: 151–161

    Article  MATH  MathSciNet  Google Scholar 

  18. Zakeri GA (1988) Numerical results for wavefront tracking. J Wave Mater Interact 3: 127–134

    Google Scholar 

  19. Zakeri GA (1989) Geometric structure of 2D weak shock waves. Appl Math Comput 33: 161–183

    Article  MATH  MathSciNet  Google Scholar 

  20. Whitham GB (1957) A new approach to problems of shock dynamics, part 1, two-dimensional problems. J Fluid Mech 2: 146–171

    Article  MathSciNet  ADS  Google Scholar 

  21. Anile AM (1984) Propagation of weak shock waves. Wave Motion 6: 571–578

    Article  MATH  MathSciNet  Google Scholar 

  22. Henshaw WD, Smyth NF, Schwendeman DW (1986) Numerical shock propagation using geometrical shock dynamics. J Fluid Mech 171: 519–545

    Article  MATH  ADS  Google Scholar 

  23. Schwendeman DW (1988) Numerical shock propagation in non-uniform media. J Fluid Mech 188: 383–410

    Article  MATH  ADS  Google Scholar 

  24. Baskar S, Prasad P (2005) Propagation of curved shock fronts using shock ray theory and comparison with other theories. J Fluid Mech 523: 171–198

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  26. Coppens AB, Beyer RT, Seiden MB, Donohue J, Guepin F, Hodson R, Townsend C (1965) Parameter of nonlinearity in fluids II. J Acoust Soc Am 38: 797–804

    Article  ADS  Google Scholar 

  27. Obermeier F (1981) On the propagation of weak and moderately strong curved shock waves. Bericht 116, Max-Planck Institut fur Stromungforschung

  28. Cole RH (1948) Underwater explosions. Princeton University Press, Princeton

    Google Scholar 

  29. Stoker JJ (1992) Water waves: the mathematical theory with applications. Wiley, New York

    MATH  Google Scholar 

  30. Zakeri GA (2008) Non-simple waves solutions via conservation laws for 2D weak shock waves. Commun Appl Nonlinear Anal 15: 9–25

    MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam-Ali Zakeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakeri, GA. Similarity solutions for two-dimensional weak shock waves. J Eng Math 67, 275–288 (2010). https://doi.org/10.1007/s10665-009-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9337-4

Keywords

Navigation