Skip to main content
Log in

Steady flow of a buoyant plume into a constant-density layer

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The upward flow of a buoyant plume emanating from a horizontal fissure into a two-layered fluid region is considered. Solutions are computed numerically for a range of fissure widths and water depths. It is shown that for a given fluid depth and fissure size there is a minimum flow rate beneath which no steady solutions exist. At this limiting flow, the fluid detaches from the wall of the fissure via a stagnation point. Solutions exist for all values of flow rate above this minimum. Exact solutions are presented for very large flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imberger J, Hamblin PF (1982) Dynamics of lakes, reservoirs and cooling ponds. Annu Rev Fluid Mech 14: 153–187

    Article  ADS  Google Scholar 

  2. List EJ (1982) Turbulent jets and plumes. Annu Rev Fluid Mech 14: 189–212

    Article  ADS  Google Scholar 

  3. Turner JS (2001) Buoyancy effects in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  4. Schlichting H (1933) Laminare Strahlausbreitung. J Appl Math Mech (ZAMM) 13: 260–263

    MATH  Google Scholar 

  5. Savage SB, Chan GKC (1970) The buoyant two-dimensional laminar vertical jet. Q J Mech Appl Math 23(3): 413–430

    Article  MATH  Google Scholar 

  6. Morton BR (1959) Forced plumes. J Fluid Mech 5: 151–163

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Gangoiti G, Sancho J, Ibarra G, Alonso L, Garcia JA, Navazo M, Durana N, Ilardia JL (1997) Rise of moist plumes from tall stacks in turbulent and stratified atmospheres. Atmos Environ 31(2): 253–269

    Article  Google Scholar 

  8. Janicke U, Janicke L (2001) A three-dimensional plume rise model for dry and wet plumes. Atmos Environ 35(5): 877–890

    Article  Google Scholar 

  9. Morita M, Hirota M (1989) Numerical analysis and experiments of convective heat flow in fire compartment. Fire Sci Technol 9: 11–24

    Google Scholar 

  10. Yu-hong Z, Wen-xin H (2005) Numerical study on the stability and mixing of vertical round buoyant jet in shallow water. Appl Math Mech 26: 92–100

    Article  MATH  Google Scholar 

  11. Hunt GR, Kaye NB (2005) Lazy plumes. J Fluid Mech 533: 329–338

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Michaux G, Vauquelin O (2008) Solutions for turbulent buoyant plumes rising from circular sources. Phys Fluids 20: 066601 (6 pages)

    Article  ADS  Google Scholar 

  13. Bishop SR, Holborn PG, Drysdale DD (1995) Experimental comparison with a compartment fire model. Int Commun Heat Mass Transf 22: 235–240

    Article  Google Scholar 

  14. Tuck EO, Goh KHM (1985) Thick waterfalls from horizontal slots. J Eng Maths 19: 341–349

    Article  MATH  Google Scholar 

  15. Tuck EO (1987) Efflux from a slit in a vertical wall. J Fluid Mech 176: 253–264

    Article  ADS  Google Scholar 

  16. Hocking GC (1992) Flow from a vertical slot into a layer of finite depth. Appl Math Model 16: 300–306

    Article  MATH  MathSciNet  Google Scholar 

  17. Tricomi FG (1957) Integral equations. Interscience, New York

    MATH  Google Scholar 

  18. Tuck EO (1980) Application and solution of Cauchy singular integral equations. In: Anderssen RS et al (eds) The application and numerical solution of integral equations. Sijthoff and Noordhoff, Alpen aan den Rijn, pp 21–50

    Google Scholar 

  19. Glauert H (1926) Aerofoil and airscrew theory. Cambridge University Press, New York

    Google Scholar 

  20. Vanden-Broeck J-M, Tuck EO (1994) Flow near the intersection of a free surface with a vertical wall. Siam J Appl Math 54: 1–13

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Christodoulides P, Dias F (2009) Impact of a rising stream on a horizontal plate of finite extent. J Fluid Mech 621: 243–258

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Hocking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hocking, G.C., Forbes, L.K. Steady flow of a buoyant plume into a constant-density layer. J Eng Math 67, 341–350 (2010). https://doi.org/10.1007/s10665-009-9324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9324-9

Keywords

Navigation