Skip to main content
Log in

Space-dependent perfusion coefficient identification in the transient bio-heat equation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The identification of the space-dependent perfusion coefficient in the one-dimensional transient bio-heat conduction equation is investigated. While Dirichlet boundary conditions are assumed, the additional measurement necessary to render a unique solution is either a heat-flux measurement or a time-average temperature measurement inside the space region of interest. A numerical approach based on the Crank–Nicolson finite-difference scheme combined with the first-order Tikhonov’s regularization method is developed. Numerical results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1: 93–122

    ADS  Google Scholar 

  2. Cardinali AV, Diller TE, Lanz O, Scott EP (2002) Validation of a noninvasive thermal perfusion system using a canine medial saphenous fasciocutaneous free tissue flap model. In: Proceedings of IMECE’02, ASME International Mechanical Engineering Congress & Exposition, November 17–22, 2002, New Orleans, Louisiana, Paper No. IMECE2002-32354

  3. Scott EP, Robinson P, Diller TE (1997) Estimation of blood perfusion using a minimally invasive perfusion probe. Adv Heat Mass Transf Biotechnol (ASME) HTD-vol 355/BED-vol 37: 205–212

    Google Scholar 

  4. Chan CL (1992) Boundary element method analysis for the bio-heat transfer equation. Trans ASME J Biomech Eng 114: 358–365

    Article  Google Scholar 

  5. Ren ZP, Liu J, Wang CC (1995) Boundary element method (BEM) for solving normal and inverse bio-heat transfer problem of biological bodies with complex shapes. J Therm Sci 4: 117–124

    Article  Google Scholar 

  6. Deng Z-S, Liu J (2000) Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. Med Eng Phys 22: 693–702

    Article  Google Scholar 

  7. Loulou T, Scott EP (2006) An inverse heat conduction problem with heat flux measurements. Int J Numer Meth Eng 67: 1587–1616

    Article  MATH  MathSciNet  Google Scholar 

  8. Robinson PS, Scott EP, Diller TE (1998) Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe. Adv Heat Mass Transf Biotechnol (ASME) HTD-vol 362/BED-vol 40: 109–115

    Google Scholar 

  9. Scott EP, Robinson P, Diller TE (1998) Development of methodologies for the estimation of blood perfusion using a minimally invasive thermal probe. Meas Sci Technol 9: 888–897

    Article  ADS  Google Scholar 

  10. Klibanov MV, Lucas TR, Frank RM (1997) Fast and accurate imaging algorithm in optical/diffusion tomography. Inverse Probl 13: 1341–1361

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Trucu D, Ingham DB, Lesnic D (2009) An inverse coefficient identification problem for the bio-heat equation. Inverse Probl Sci Eng 17: 65–83

    Article  MATH  MathSciNet  Google Scholar 

  12. Trucu D, Ingham DB, Lesnic D (2008) Inverse time-dependent perfusion coefficient identification. J Phys: Conf Ser 124(012050): 28

    Google Scholar 

  13. Trucu D, Ingham DB, Lesnic D (2008) Inverse space-dependent perfusion coefficient identification. J Phys: Conf Ser 135(012098): 8

    Google Scholar 

  14. Denisov AM (1999) Elements of the theory of inverse problems. VSP, Utrecht

    MATH  Google Scholar 

  15. Rodrigues FA, Orlande HRB, Dulikravich GS (2004) Simultaneous estimation of spatially dependent diffusion coefficient and source term in a nonlinear 1D diffusion problem. Math Comput Simul 66: 409–424

    Article  MATH  MathSciNet  Google Scholar 

  16. Tadi M, Klibanov MV, Cai W (2002) An inverse method for parabolic equations based on quasireversibility. Comput Math Appl 43: 927–941

    Article  MATH  MathSciNet  Google Scholar 

  17. Choulli M (1994) An inverse problem for a semilinear parabolic equation. Inverse Probl 10: 1123–1132

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Choulli M, Yamamoto M (1996) Generic well-posedness of an inverse parabolic problem - the Holder-space approach. Inverse Probl 12: 195–205

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Choulli M, Yamamoto M (1997) An inverse parabolic problem with non-zero initial condition. Inverse Probl 13: 19–27

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Isakov V (1991) Inverse parabolic problems with the final overdetermination Commun. Pure Appl Math 54: 185–209

    Article  MathSciNet  Google Scholar 

  21. Isakov V (1999) Some inverse problems for the diffusion equation. Inverse Probl 15: 3–10

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Prilepko AI, Kostin AB (1993) On certain inverse problems for parabolic equations with final and integral observations. Russ Acad Sci Sb Math 75(2): 473–490

    Article  MathSciNet  Google Scholar 

  23. Prilepko AI, Solov’ev (1987) Solvability of the inverse boundary-value problem of finding a coefficient of a lower-order derivative in a parabolic equation. Differ Equ 23: 101–107

    MATH  Google Scholar 

  24. Rundell W (1987) The determination of a parabolic equation from initial and final data. Proc Am Math Soc 99: 637–642

    MATH  MathSciNet  Google Scholar 

  25. Yu W (1991) On the existence of an inverse problem. J Math Anal Appl 157: 63–74

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen Q, Liu J (2006) Solving an inverse parabolic problem by optimization from final measurement data. J Comput Appl Math 193: 183–203

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Deng Z-C, Yang L, Yu J-N (2009) Identifying the radiative coefficient of heat conduction equations from discrete measurement data. Appl Math Lett 22: 495–500

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang L, Yu J-N, Deng Z-C (2008) An inverse problem of identifying the coefficient of parabolic equation. Appl Math Modell 32: 1984–1995

    Article  MATH  MathSciNet  Google Scholar 

  29. Ramm AG (2000) Property C for ODE and applications to inverse problems. Fields Inst Commun 25: 15–75

    Google Scholar 

  30. Ramm AG (2001) An inverse problem for the heat equation. J Math Anal Appl 264: 691–697

    Article  MATH  MathSciNet  Google Scholar 

  31. Isakov V (2006) Inverse problems for partial differential equations, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  32. Ladyzhenskaya OA, Solonnikov VA, Ural’tseva NN (1968) Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence

    Google Scholar 

  33. Dahlquist G, Bjorck A (1974) Numerical methods. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lesnic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trucu, D., Ingham, D.B. & Lesnic, D. Space-dependent perfusion coefficient identification in the transient bio-heat equation. J Eng Math 67, 307–315 (2010). https://doi.org/10.1007/s10665-009-9319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9319-6

Keywords

Navigation