Skip to main content
Log in

Coated photonic crystals: computation of the Green tensor and analysis of the bandgap

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A finite-size two-dimensional photonic crystal composed of dielectric rods with holes centered within each rod is considered. The geometry of the rods, as well as the holes, is of arbitrary shape. A boundary-element method is implemented for computing the Green tensor. The semi-analytical solution is used for validating the numerical results in the case of circular geometry. Different types of configurations and geometry shapes are considered in the computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhlmey BT, Pathmanandavel K, McPhedran RC (2006) Multipole analysis of photonic crystal fibers with coated inclusions. Opt Express 14: 10851–10864

    Article  ADS  Google Scholar 

  2. Kurt H, Citrin DS (2005) Annular photonic crystals. Opt Express 13: 10316–10326

    Article  ADS  Google Scholar 

  3. Wang SW, Lu W, Chen XS, Li ZF, Shen XC, Wen XC (2003) Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders. J Appl Phys 93: 9401–9403

    Article  ADS  Google Scholar 

  4. Stone JM, Pearce GJ, Luan F, Birks TA, Knight JC, George AK, Bird DM (2006) An improved photonic bandgap fiber based on an array of rings. Opt Express 14: 6291–6296

    Article  ADS  Google Scholar 

  5. Seydou F, Ramahi OM, Duraiswami R, Seppänen T (2006) Numerical computation of the Greenć6s function for two dimensional finite size photonic crystals of infinite length. Opt Express 14: 11362–11371

    Article  ADS  Google Scholar 

  6. van de Water AM, de Hon BP, van Beurden MC, Tijhuis AG, de Maagt P (2005) Linear embedding via Green’s operators: a modeling technique for finite electromagnetic band-gap structures. Phys Rev E 72: 056704

    Article  ADS  Google Scholar 

  7. Dobson DC (1999) An efficient method for band structure calculations in 2D photonic crystals. J Comput Phys 149: 363–376

    Article  MATH  ADS  Google Scholar 

  8. Li EP, Wang QX, Zhang YJ, Ooi BL (2005) Analysis of finite-size coated electromagnetic bandgap structure by an efficient scattering matrix method. IEEE J Sel Top Qunantum Electron 11: 485–492

    Article  Google Scholar 

  9. Kress R, Roach G (1978) Transmission problems for the Helmholtz equation. J Math Phys 19: 1433–1437

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Kleinman R, Martin P (1988) On single integral equations for the transmission problem of acoustics. SIAM J Appl Math 48: 307–325

    Article  MathSciNet  Google Scholar 

  11. Martin OJF, Piller NB (1998) Electromagnetic scattering in polarizable backgrounds. Phys Rev E 58: 3909

    Article  ADS  Google Scholar 

  12. Asatryan AA, Busch K, McPhedran RC, Botten LC, de Sterke CM, Nicorovici NA (2003) Two-dimensional Green tensor and local density of states in finite-sized two-dimensional photonic crystals. Wave Random Media 13: 9–25

    Article  MATH  ADS  Google Scholar 

  13. Colton D, Kress R (1983) Integral equation methods in scattering theory. John Wiley, New York

    MATH  Google Scholar 

  14. Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory. Springer-Verlag, Berlin

    MATH  Google Scholar 

  15. Kress R (1995) On the numerical solution of a hypersingular integral equation in scattering theory. J Comp Appl Math 61: 345–360

    Article  MATH  MathSciNet  Google Scholar 

  16. Kress R (1999) Linear integral equations. Springer, New York

    MATH  Google Scholar 

  17. Song JM, Chew WC (2001) FMM and MLFMA in 3D and fast Illinois solver code. In: Chew WC, Jin J-M, Michielssen E, Song JM (eds) Fast and efficient algorithms in computational electromagnetics. Artech House, Norwood

    Google Scholar 

  18. Asatryan AA, Busch K, McPhedran RC, Botten LC, Martijn de Sterke C, Nicorovici NA (2001) Two-dimensional Green function and local density of states in photonic crystals consisting of a fnite number of cylinders of infnite length. Phys Rev E 63: 046612

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Seydou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydou, F., Ramahi, O.M. & Seppänen, T. Coated photonic crystals: computation of the Green tensor and analysis of the bandgap. J Eng Math 65, 243–255 (2009). https://doi.org/10.1007/s10665-009-9310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9310-2

Keywords

Navigation