Skip to main content
Log in

Water distribution under trickle irrigation predicted using artificial neural networks

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) technology is presented as an alternative to physical-based modeling of subsurface water distribution from trickle emitters. Three options are explored to prepare input–output functional relations from a database created using a numerical model (HYDRUS-2D). From the database the feasibility and advantages of the three alternative options are evaluated: water-content at defined coordinates, moment analysis describing the shape of the plume, and coordinates of individual water-content contours. The best option is determined in a way by the application objectives, but results suggest that prediction using moment analyses is probably the most versatile and robust and gives an adequate picture of the subsurface distribution. Of the other two options, the direct determination of the individual water contours was subjectively judged to be more successful than predicting the water content at given coordinates, at least in terms of describing the subsurface distribution. The results can be used to estimate subsurface water distribution for essentially any soil properties, initial conditions or flow rates for trickle sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresler E (1978) Analysis of trickle irrigation with application to design problems. Irrig Sci 1: 3–17. doi:10.1007/BF00269003

    Article  Google Scholar 

  2. Lubana PPS, Narda NK (2001) Soil and water modeling: soil water dynamics under trickle emitters—a review. J Agric Eng Res 78: 217–232. doi:10.1006/jaer.2000.0650

    Article  Google Scholar 

  3. Mmolawa K, Or D (2000) Water and solute dynamics under a drip-irrigated crop: experiments and analytical model. Trans ASAE 43: 1597–1608

    Google Scholar 

  4. Mmolawa K, Or D (2003) Experimental and numerical evaluation of analytical volume balance model for soil water dynamics under drip irrigation. Soil Sci Soc Am J 67: 1657–1671

    Google Scholar 

  5. Ben-Gal A, Lazarovitch N et al (2004) Subsurface drip irrigation in gravel-filled cavities. Vadose Zone J 3: 1407–1413

    Article  Google Scholar 

  6. Skaggs TH, Trout T et al (2004) Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. J Irrig Drain Eng 130: 304–310. doi:10.1061/(ASCE)0733-9437(2004)130:4(304)

    Article  Google Scholar 

  7. Green WH, Ampt GA (1911) Studies on soil physics. Part 1. The flow of air and water through soils. J Agric Sci 4: 1–24

    Article  Google Scholar 

  8. Gardner WR (1958) Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci 85: 228–232

    Article  Google Scholar 

  9. Warrick AW, Lazarovitch N (2007) Infiltration from a strip source. Water Resour Res 43: W03420. doi:10.1029/2006WR004975

    Article  Google Scholar 

  10. Mansell RS, Ma L et al (2002) Adaptive grid refinement in numerical models for water flow and chemical transport in soil: a review. Vadose Zone J 1: 222–238

    Article  Google Scholar 

  11. Schaap MG, Bouten W (1996) Modeling water retention curves of sandy soils using neural networks. Water Resour Res 32: 3033–3040. doi:10.1029/96WR02278

    Article  ADS  Google Scholar 

  12. Schaap MG, Leij FJ et al (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62: 847–855

    Google Scholar 

  13. Minasny B, McBratney AB (2002) The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci Soc Am J 66: 352–361

    Google Scholar 

  14. Minasny B, Hopmans JW et al (2004) Neural networks prediction of soil hydraulic functions from multi-step outflow data. Soil Sci Soc Am J 68: 417–429

    Google Scholar 

  15. Schaap MG, Leij FJ et al (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol (Amst) 251: 163–176. doi:10.1016/S0022-1694(01)00466-8

    Article  Google Scholar 

  16. Schmitz GH, Schutze N et al (2002) New strategy for optimizing water application under drip irrigation. J Irrig Drain Eng 128: 287–297. doi:10.1061/(ASCE)0733-9437(2002)128:5(287)

    Article  Google Scholar 

  17. Jiusheng L, Yoder RE et al (2004) Simulation of nitrate distribution under drip irrigation using artificial neural networks. Irrig Sci 23: 29–37. doi:10.1007/s00271-003-0090-6

    Article  Google Scholar 

  18. Richards LA (1931) Capillary conduction of liquids in porous mediums. Physics 1: 318–333. doi:10.1063/1.1745010

    Article  Google Scholar 

  19. Šimůnek J, Sejna M et al (1999) The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 2.0. US Salinity Laboratory, Riverside, CA

    Google Scholar 

  20. Lazarovitch N, Šimůnek J et al (2005) System-dependent boundary condition for water flow from subsurface source. Soil Sci Soc Am J 69: 46–50

    Google Scholar 

  21. Gardenas AI, Hopmans JW et al (2005) Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric Water Manag 74: 21–242. doi:10.1016/j.agat.2004.11.011

    Article  Google Scholar 

  22. Lazarovitch N, Warrick AW et al (2007) Water content distribution in drip irrigation described by moment analyses. Vadose Zone J 6: 116–123. doi:10.2136/vzj2006.0052

    Article  Google Scholar 

  23. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12: 513–522. doi:10.1029/WR012i003p00513

    Article  ADS  Google Scholar 

  24. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44: 892–898

    Google Scholar 

  25. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24: 755–769. doi:10.1029/WR024i005p00755

    Article  ADS  Google Scholar 

  26. Poulton M (ed) (2001) Computational neural networks for geophysical data processing. Pergamon, Amsterdam

    Google Scholar 

  27. Hertz J, Krogh A et al (1991) Introduction to the theory of neural computation. Addison Wesley, New York

    Google Scholar 

  28. Bishop C (1995) Neural networks for pattern recognition. Oxford Press, London

    Google Scholar 

  29. StatSoft (2001) STATISTICA for Windows v. 6.0. StatSoft, Tulsa, OK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lazarovitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarovitch, N., Poulton, M., Furman, A. et al. Water distribution under trickle irrigation predicted using artificial neural networks. J Eng Math 64, 207–218 (2009). https://doi.org/10.1007/s10665-009-9282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9282-2

Keywords

Navigation