Skip to main content
Log in

Necking in coating flow over periodic substrates

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The free-boundary problem determining the shape of a layer of viscous fluid coating a substrate while draining steadily under gravity is solved analytically for substrates taking the form of a periodic array of long plates of arbitrary width and spacing. The mathematical problem involves solving Poisson’s equation with constant forcing term in the fluid layer subject to vanishing Neumann and Dirichlet conditions on the free boundary. By considering the problem in a potential plane and using conformal mapping, a two-parameter family of solutions is obtained in the form of an infinite series. Explicit, closed-form solutions are derived in the limiting cases of a single gap perforating an infinitely wide plate, and for an array of evenly spaced point plates. In these cases explicit expressions are obtained for the thinning, or necking, of the fluid layer in the gap regions between plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruschak KJ (1985) Coating flows. Ann Rev Fluid Mech 17: 65–89

    Article  ADS  Google Scholar 

  2. Jin B, Acrivos A, Munch A (2005) The drag-out problem in film coating. Phys Fluids 17: 103–603

    Google Scholar 

  3. Wilson SD (1982) The drag-out problem in film coating theory. J Eng Math 16: 209–221

    Article  MATH  ADS  Google Scholar 

  4. Tuck EO, Bentwich M, van der Hoek J (1983) The free boundary problem for gravity-driven unidirectional viscous flows. IMA J Appl Math 30: 191–208

    Article  MATH  MathSciNet  Google Scholar 

  5. Howison SD (1987) Complex variables in industrial mathematics. In: Neunzert H (ed) Proceedings 2nd Eur Symp Math Industry, pp 155–166

  6. Howison SD, King JR (1989) Explicit solution to six free-boundary problems in fluid flow and diffusion. IMA J Appl Math 42: 155–175

    Article  MATH  MathSciNet  Google Scholar 

  7. Polubarinova-Kochina PYa (1962) Theory of groundwater movement. Princeton University Press, NJ

    Google Scholar 

  8. Craster RV (1994) Two related free boundary problems. IMA J Appl Math 52: 253–270

    Article  MATH  MathSciNet  Google Scholar 

  9. Crowdy DG (2004) Exact solutions for uniform vortex layers attached to corners and wedges. Eur J Appl Math 15: 643–650

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnson ER, McDonald NR (2006) Vortical source-sink flow against a wall: the initial value problem and exact steady states. Phys Fluids 18: 076601

    Article  ADS  MathSciNet  Google Scholar 

  11. Johnson ER, McDonald NR (2007) Steady vortical flow around a finite plate. Q J Mech Appl Math 60: 65–72

    Article  MATH  MathSciNet  Google Scholar 

  12. Whittaker ET, Watson GN (1915) A course of modern analysis. Cambridge University Press, London

    MATH  Google Scholar 

  13. Johnson ER, McDonald NR (2005) Vortices near barriers with multiple gaps. J Fluid Mech 531: 335–358

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Johnson ER, McDonald NR (2004) The motion of a vortex near two circular cylinders. Proc R Soc A 460: 939–954

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Abramowitz M, Stegun IE (1972) Handbook of mathematical functions. US Dept. Commerce

  16. Saffman PG (1992) Vortex dynamics. Cambridge University Press, London

    MATH  Google Scholar 

  17. Crowdy DG (1999) A class of exact multipolar vortices. Phys Fluids 11: 2556–2564

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Cummings LJ, Howison SD, King JR (1999) Two-dimensional Stokes and Hele-Shaw flows with free surfaces. Eur J Appl Math 10: 635–680

    Article  MATH  MathSciNet  Google Scholar 

  19. Choudhary M, Chahar BR (2007) Recharge/seepage from an array of rectangular channels. J Hydrol 343: 71–79

    Article  Google Scholar 

  20. Hoang HV, Hill JM, Dewynne JN (1998) Pseudo-steady-state solutions for solidification in a wedge. IMA J Appl Math 60: 109–121

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E.R., McDonald, N.R. Necking in coating flow over periodic substrates. J Eng Math 65, 171–178 (2009). https://doi.org/10.1007/s10665-009-9273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9273-3

Keywords

Navigation