Skip to main content
Log in

Analytical decoupling of poroelasticity equations for acoustic-wave propagation and attenuation in a porous medium containing two immiscible fluids

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Poroelasticity theory has become an effective and accurate approach to analyzing the intricate mechanical behavior of a porous medium containing two immiscible fluids, a system encountered in many subsurface engineering applications. However, the resulting partial differential equations in the theory intrinsically take on a coupled form in the terms pertinent to inertial drag, viscous damping, and applied stress, making it difficult to obtain closed-form, steady-state analytical solutions to boundary-value problems except in special cases. In the present paper, we demonstrate that, for dilatational wave excitations, these partial differential equations can be decoupled analytically into three Helmholtz equations featuring complex-valued, frequency-dependent normal coordinates that correspond physically to three independent modes of dilatational wave motion. The normal coordinates in turn can be expressed in the frequency domain as three different linear combinations of the solid dilatation and the linearized increment of fluid content for each pore fluid, or equivalently, as three different linear combinations of total dilatational stress and two pore fluid pressures. These representations are applicable to strain-controlled and stress-prescribed boundary conditions, respectively. Numerical calculations confirm that the phase speed and attenuation coefficient of the three dilatational waves represented by the Helmholtz equations are exactly identical to those obtained previously by numerical solution of the dispersion relations for dilatational wave excitation of a porous medium containing two immiscible fluids. Thus, dilatational wave motions in unsaturated porous media subject to suitable boundary conditions can now be accurately modeled analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson DL (1986) Recent developments in the acoustic properties of porous media. In: Sette D (eds) Proceedings of the international school of physics Enrico Fermi Course XCIII, Frontiers in physical acoustics. North Holland, Amsterdam, pp 255–290

    Google Scholar 

  2. Finol A, Farouq Ali SM (1975) Numerical simulation of oil production with simultaneous ground subsidence. J Soc Petrol Eng 259: 411–422

    Google Scholar 

  3. Kosloff D, Scott RF, Scranton M (1980) Finite element simulation of Wilmington oil field subsidence: I. linear modeling. Tectonophys 65: 339–368. doi:10.1016/0040-1951(80)90082-7

    Article  Google Scholar 

  4. Corapcioglu MY, Bear J (1983) A mathematical model for regional land subsidence due to pumping: 3 integrated equations for a phreatic aquifers. Water Resour Res 19: 895–908. doi:10.1029/WR019i004p00895

    Article  ADS  Google Scholar 

  5. Beresnev IA, Johnson PA (1994) Elastic-wave stimulation of oil production: a review of methods and results. Geophysics 59(6): 1000–1017. doi:10.1190/1.1443645

    Article  ADS  Google Scholar 

  6. Spanos T, Davidson B, Dusseault M, Shand D, Samaroo M (2003) Pressure pulsing at the reservoir scale: a new IOR approach. J Can Petrol Technol 42(2): 16–28

    Google Scholar 

  7. Montgomery DR, Manga M (2003) Steamflow and water well response to earthquakes. Science 300: 2047–2049. doi:10.1126/science.1082980

    Article  ADS  Google Scholar 

  8. Gambolati G, Teatini P, Baú D, Ferronato M (2000) Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy. Water Resour Res 36(9): 2443–2459. doi:10.1029/2000WR900127

    Article  ADS  Google Scholar 

  9. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton

    Google Scholar 

  10. Li X, Zhong L, Pyrak-Nolte LJ (2001) Physics of partially saturated porous media: residual saturation and seismic-wave propagation. Annu Rev Earth Planet Sci 29: 419–460. doi:10.1146/annurev.earth.29.1.419

    Article  ADS  Google Scholar 

  11. Cosenza P, Ghoreychi M, de Marsily G, Vasseur G, Violette S (2002) Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient. Water Resour Res 38(10): 1207. doi:10.1029/2001WR001201

    Article  ADS  Google Scholar 

  12. Coussy O (2004) Poromechanics. Wiley, Chichester

    Google Scholar 

  13. Lo WC, Sposito G, Majer E (2005) Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 41: W02025. doi:10.1029/2004WR003162

    Article  Google Scholar 

  14. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12: 155–164. doi:10.1063/1.1712886

    Article  ADS  Google Scholar 

  15. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, II. Higher frequency range. J Acoust Soc Am 28(2): 168–191. doi:10.1121/1.1908239

    Article  MathSciNet  ADS  Google Scholar 

  16. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4): 1482–1498. doi:10.1063/1.1728759

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer-Verlag, New York

    Google Scholar 

  18. Dullien FLA (1992) Porous media: fluid transport and pore structure. Academic Press, San Diego

    Google Scholar 

  19. Brutsaert W (1964) The propagation of elastic waves in unconsolidated unsaturated granular mediums. J Geophys Res 69(2): 243–257. doi:10.1029/JZ069i002p00243

    Article  ADS  Google Scholar 

  20. Brutsaert W, Luthin JM (1964) The velocity of sound in soils near the surface as a function of the moisture content. J Geophys Res 69(4): 643–652. doi:10.1029/JZ069i004p00643

    Article  ADS  Google Scholar 

  21. Garg SK, Nayfeh AH (1986) Compressional wave propagation in liquid and/or gas saturated elastic porous media. J Appl Phys 60(9): 3045–3055. doi:10.1063/1.337760

    Article  ADS  Google Scholar 

  22. Tuncay K, Corapcioglu MY (1997) Wave propagation in poroelastic media saturated by two fluids. J Appl Mech 64(2): 313–320. doi:10.1115/1.2787309

    Article  MATH  Google Scholar 

  23. Wei C, Muraleetharan KK (2002) A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity. Int J Eng Sci 40: 1807–1833. doi:10.1016/S0020-7225(02)00068-X

    Article  MathSciNet  Google Scholar 

  24. Berryman JG, Thigpen L, Chin RCY (1988) Bulk elastic wave propagation in partially saturated porous solids. J Acoust Soc Am 84(1): 360–373. doi:10.1121/1.396938

    Article  ADS  Google Scholar 

  25. Santos JE, Corbero JM, Douglas J (1990) Static and dynamic behavior of a porous solid saturated by a two-phase fluid. J Acoust Soc Am 87(4): 1428–1438. doi:10.1121/1.399439

    Article  MathSciNet  ADS  Google Scholar 

  26. Dutta NC, Ode H (1979) Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)—Part I: Biot theory. Geophysics 11: 1777–1788. doi:10.1190/1.1440938

    Article  ADS  Google Scholar 

  27. Berryman JG (1983) Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies. J Acoust Soc Am 74(6): 1805–1812. doi:10.1121/1.390266

    Article  ADS  MATH  Google Scholar 

  28. Chandler RN, Johnson DL (1981) The equivalence of quasistatic flow in fluid-saturated porous media and Biot’s slow wave in the limit of zero frequency. J Appl Phys 52(5): 3391–3395. doi:10.1063/1.329164

    Article  ADS  Google Scholar 

  29. Lo WC, Sposito G, Majer E (2002) Immiscible two-phase fluid flows in deformable porous media. Adv Water Resour 25(8–12): 1105–1117

    Article  Google Scholar 

  30. Lo WC, Sposito G, Majer E (2006) Low-frequency dilatational wave propagation through fully-saturated poroelastic media. Adv Water Resour 29(3): 408–416. doi:10.1016/j.advwatres.2005.05.012

    Article  ADS  Google Scholar 

  31. Lo WC (2006) Decoupling of the coupled poroelastic equations for quasistatic flow in deformable porous media containing two immiscible fluids. Adv Water Resour 29(12): 1893–1900. doi:10.1016/j.advwatres.2006.01.002

    Article  MathSciNet  ADS  Google Scholar 

  32. Lo WC, Sposito G, Majer E (2007) Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids. Transp Porous Media 68: 91–105. doi:10.1007/s11242-006-9059-2

    Article  MathSciNet  Google Scholar 

  33. de la Cruz V, Spanos TJT (1985) Seismic wave propagation in a porous medium. Geophysics 50: 1556–1565. doi:10.1190/1.1441846

    Article  ADS  Google Scholar 

  34. Pride SR, Gangi AF, Morgan FD (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc Am 92(6): 3278–3290. doi:10.1121/1.404178

    Article  ADS  Google Scholar 

  35. Maas C (1986) The use of matrix differential calculus in problems of multiple-aquifer flow. J Hydrol (Amst) 88: 43–67. doi:10.1016/0022-1694(86)90196-4

    Article  Google Scholar 

  36. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5): 892–898

    Google Scholar 

  37. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3): 513–522. doi:10.1029/WR012i003p00513

    Article  ADS  Google Scholar 

  38. Das BM (1993) Principles of soil dynamics. PWS-Kent, Boston

    Google Scholar 

  39. Bishop AW (1959) The principle of effective stress. Teknisk Ukeblad 39: 859–863

    Google Scholar 

  40. Bear J, Bachmat Y (1991) Introduction to modeling of transport phenomena in porous media. Kluwer, Netherlands

    MATH  Google Scholar 

  41. Whitaker S (1973) Transport equations for multiphase system. Chem Eng Sci 28(1): 139–147. doi:10.1016/0009-2509(73)85094-8

    Article  Google Scholar 

  42. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24: 594–601

    MathSciNet  Google Scholar 

  43. Gray WG (1983) General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Adv Water Resour 6: 130–140. doi:10.1016/0309-1708(83)90025-8

    Article  Google Scholar 

  44. Stoll RD (1974) Acoustic waves in saturated sediments. In: Hampton L (eds) Physics of sound in marine sediments. Plenum, New York, pp 19–39

    Google Scholar 

  45. Berryman JG (1980) Confirmation of Biot’s theory. Appl Phys Lett 37(4): 382–384. doi:10.1063/1.91951

    Article  MathSciNet  ADS  Google Scholar 

  46. Johnson DL, Plona TJ, Scala C, Pasierb F, Kojima H (1982) Tortuosity and acoustic slow waves. Phys Rev Lett 49(25): 1840–1844. doi:10.1103/PhysRevLett.49.1840

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Cheng Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, WC., Sposito, G. & Majer, E. Analytical decoupling of poroelasticity equations for acoustic-wave propagation and attenuation in a porous medium containing two immiscible fluids. J Eng Math 64, 219–235 (2009). https://doi.org/10.1007/s10665-008-9254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-008-9254-y

Keywords

Navigation