Skip to main content
Log in

Impulsive effect on an elastic solid with generalized thermodiffusion

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The theory of generalized thermoelastic diffusion with one relaxation time is employed to study the distribution of temperature, displacement components, stresses, concentration and chemical potential in a semi-infinite medium having an impulsive mechanical load at the origin. Using the joint Laplace and Fourier transforms, the governing equations are transformed into a vector–matrix differential equation which is then solved by the eigenvalue approach. The solution of the problem in the physical domain is obtained numerically using a numerical method for the inversion of the Laplace and Fourier transforms. Results of this work are presented graphically and are compared with the results of generalized thermoelasticity and classical elasticity deduced as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duhamel J (1837) Une memoire sur les phenomenes thermo-mechanique. J De L Ecole Polytechnique 15: 1–31

    Google Scholar 

  2. Neumann F (1885) Vorlesungen Über die Theorie der Elasticität. Breslau, Meyer

  3. Biot M (1956) Thermoelasticity and irreversible thermo-dynamics. J Appl Phys 27: 240–253

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15: 299–309

    Article  MATH  ADS  Google Scholar 

  5. Ignaczak J (1982) A note on uniqueness in thermoelasticity with one relaxation time. J Therm Stresses 5: 257–263

    Article  MathSciNet  Google Scholar 

  6. Sherief H (1987) On uniqueness and stability in generalized thermoelasticity. Quart Appl Math 45: 773–778

    MathSciNet  Google Scholar 

  7. Hetnarski RB, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37: 215–224

    Article  MATH  MathSciNet  Google Scholar 

  8. Ignaczak J, Carbonaro B, Russo R (1986) Domain of influence theorem in Thermoelasticity with one relaxation time. J Therm Stresses 9: 79–91

    Article  MathSciNet  Google Scholar 

  9. Ignaczak J (1991) Domain of influence results in generalized thermoelasticity—a survey. Appl Mech Rev 44: 375–382

    Article  MathSciNet  Google Scholar 

  10. Anwar N, Sherief H (1988) State space approach to generalized thermoelasticity. J Therm Stresses 11: 353–365

    Article  Google Scholar 

  11. Sherief H (1993) State space formulation for generalized thermoelasticity with one relaxation time including heat sources. J Thermal Stresses 16: 163–180

    Article  MathSciNet  Google Scholar 

  12. Anwar N, Sherief H (1988) Boundary integral equation formulation of generalized thermoelasticity in a Laplace transform domain. Appl Math Model 12: 161–166

    Article  MATH  MathSciNet  Google Scholar 

  13. Sherief H, Hamza F (1994) Generalized thermoelastic problem of a thick plate under axisymmetric temperature distribution. J Therm Stresses 17: 435–453

    Article  Google Scholar 

  14. Sherief H, Hamza F (1996) Generalized two dimensional thermoelastic problems in spherical regions under axisymmetric distribution. J Therm Stresses 19: 55–76

    Article  Google Scholar 

  15. Sherief H, El-Maghraby N (2003) An internal penny-shaped crack in an infinite thermoelastic solid. J Therm Stresses 26: 333–352

    Article  Google Scholar 

  16. Sinha AN, Sinha SB (1974) Reflection of thermoelastic waves at a solid half-space with thermal relaxation. J Phys Earth 22: 237–244

    Google Scholar 

  17. Abd-Alla AN, Al-Dawy AA (2000) The reflection phenomena of SV waves in a generalized thermoelastic medium. Int J Math Sci 23: 529–546

    Article  MATH  MathSciNet  Google Scholar 

  18. Sharma JN, Kumar V, Chand D (2003) Reflection of generalized thermoelastic waves from the boundary of a half-space. J Therm Stresses 26: 925–942

    Article  Google Scholar 

  19. Sherief H, Helmy KA (1999) A two dimensional generalized thermoelasticity problem for a half-space. J Therm Stresses 22: 897–910

    Article  MathSciNet  Google Scholar 

  20. Lamb H (1904) On the propagation of tremors over the surface of an elastic solid. Philos Trans R Soc Lond Ser A 203: 1–42

    Article  ADS  Google Scholar 

  21. Fung YC, Tong P (2001) Classical and computational solid mechanics, chap 8. World Scientific, Singapore, 273 pp

  22. Sharma JN, Chauhan RS (2001) Mechanical and thermal sources in a generalized thermoelastic half-space. J Therm Stresses 24: 651–675

    Article  Google Scholar 

  23. El-Maghraby NM (2004) Two dimensional problem in generalized thermoelasticity with heat sources. J Therm Stresses 27: 227–239

    Article  Google Scholar 

  24. Nowacki W (1974) Dynamic problems of thermoelastic diffusion in solids. I Bulletin de l’Academic Polonaise des Sciences Serie des Sciences Techniques 22: 55–64

    MathSciNet  Google Scholar 

  25. Nowacki W (1974) Dynamic problems of thermoelastic diffusion in solids. II Bulletin de l’Academic Polonaise des Sciences Serie des Sciences Techniques 22: 129–135

    Google Scholar 

  26. Nowacki W (1974) Dynamic problems of thermoelastic diffusion in solids. III Bulletin de l’Academic Polonaise des Sciences Serie des Sciences Techniques 22: 266–275

    Google Scholar 

  27. Nowacki W (1976) Dynamic problems of diffusion in solids. Eng Fract Mech 8: 261–266

    Article  Google Scholar 

  28. Sherief H, Hamza F, Saleh H (2004) The theory of generalized thermoelastic diffusion. Int J Eng Sci 42: 591–608

    Article  MathSciNet  Google Scholar 

  29. Honig G, Hirdes U (1984) A method for the numerical inversion of the Laplace transform. J Comput Appl Math 10: 113–132

    Article  MATH  MathSciNet  Google Scholar 

  30. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1986) (Second edition) Numerical recipes in FORTRAN, 2nd edn, chap 4. Cambridge University Press, Cambridge, 134 pp

  31. Thomas L (1980) Fundamentals of heat transfer. Prentice-Hall Inc. Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Deswal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deswal, S., Choudhary, S. Impulsive effect on an elastic solid with generalized thermodiffusion. J Eng Math 63, 79–94 (2009). https://doi.org/10.1007/s10665-008-9249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-008-9249-8

Keywords

Navigation