Skip to main content
Log in

Wave propagation at high dissociation temperatures

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Waves in ideal dissociating gases are examined in the limit of large dissociation temperatures. Both strong shock waves and weak finite-amplitude signalling problems are considered. The shock analysis is based on the Freeman limit, and an extension to higher Mach numbers is given. Even small-amplitude near-field theories, which are concerned with times comparable to the signal scale, can contain nonlinear exponential terms when the dissociation temperature is large. A corresponding endothermic Clarke equation is derived and solutions are determined in the Newtonian limit. Far-field theory, involving both convective and chemical nonlinearities, is also discussed. Suitable high-frequency solutions are obtained, together with results for the evolution of the shock path and the decay of the signal amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lighthill MJ (1957) Dynamics of a dissociating gas. Part I. Equilibrium flow. J Fluid Mech 2: 1–32 doi:10.1017/S0022112057000713

    Article  ADS  MathSciNet  Google Scholar 

  2. Freeman NC (1958) Non-equilibrium flow of an ideal dissociating gas. J Fluid Mech 4: 407–425 doi:10.1017/S0022112058000549

    Article  ADS  MathSciNet  Google Scholar 

  3. Clarke JF, McChesney M (1964) The dynamics of real gases. Butterworths, London

    Google Scholar 

  4. Vincenti WG, Kruger CH Jr (1965) Introduction to physical gas dynamics. Wiley, London

    Google Scholar 

  5. Lighthill MJ (1956) Viscosity effects in sound waves of finite amplitude. In: Batchelor GK, Davies RM (eds), Surveys in mechanics. Cambridge University Press, Combridge

  6. Chu BT (1957) Wave propagation and the method of characteristics in reacting gas mixtures with applications to hypersonic flow. Wright Air Development Center TN-57–213

  7. Clarke JF (1981) Propagation of gas dynamic disturbances in an explosive atmosphere. Prog Astronaut Aeronaut 76: 383–402

    Google Scholar 

  8. Clarke JF, Cant RS (1985) Nonsteady gasdynamic effects in the induction domain behind a strong shock wave. Prog Astronaut Aeronaut 95: 142–163

    Google Scholar 

  9. Jackson TL, Kapila AK (1985) Shock induced thermal runaway. SIAM J App Math 49: 432–458 doi:10.1137/0149027

    Article  MathSciNet  Google Scholar 

  10. Blythe PA, Crighton DG (1989) Shock-generated ignition: the induction zone. Proc R Soc Lond A Math Phys Sci 426: 189–209 doi:10.1098/rspa.1989.0123

    MATH  ADS  MathSciNet  Google Scholar 

  11. Moore FK, Gibson WE (1960) Propagation of weak disturbances in a gas subject to relaxation effects. J Aerospace Sci 27: 117–127

    MATH  Google Scholar 

  12. Blythe PA (1969) Non-linear wave propagation in a relaxing gas. J Fluid Mech 37: 31–50 doi:10.1017/S0022112069000401

    Article  MATH  ADS  Google Scholar 

  13. Ockendon H, Spence DA (1969) Non-linear wave propagation in a relaxing gas. J Fluid Mech 39: 329–345 doi:10.1017/S0022112069002205

    Article  MATH  ADS  Google Scholar 

  14. Blythe PA (1979) Wave propagation and ignition in a combustible mixture. Proc. 17th int. symp. on combustion, The Combustion. Institute, Pittsburgh, PA, 909–916

  15. Clarke JF (1979) On the evolution of compression pulses in an exploding atmosphere: initial behaviour. J Fluid Mech 94: 195–208 doi:10.1017/S0022112079000999

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Johannesen NH (1961) Analysis of vibrational relaxation regions by means of the Rayleigh-line method. J Fluid Mech 10: 25–32 doi:10.1017/S0022112061000032

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Lighthill MJ (1949) A technique for rendering approximate solutions to physical problems uniformly valid. Philos Mag 40: 1179–1201

    MATH  MathSciNet  Google Scholar 

  18. Morrison JA (1957) Wave propagation in rods of Voigt material and visco-elastic materials with three parameter models. Q App Math 14: 153–169

    MathSciNet  Google Scholar 

  19. Varley E, Rogers TG (1967) The propagation of high-frequency finite acceleration pulses and shocks in visco-elastic materials. Proc R Soc Lond A Math Phys Sci 296: 498–518 doi:10.1098/rspa.1967.0041

    Article  ADS  Google Scholar 

  20. Bray KNC (1959) Atomic recombination in a hypersonic wind tunnel nozzle. J Fluid Mech 17: 1–32 doi:10.1017/S0022112059000477

    Article  ADS  Google Scholar 

  21. Blythe PA (1964) Asymptotic solutions in non-equilibrium nozzle flow. J Fluid Mech 20: 243–272 doi:10.1017/S0022112064001185

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Cheng HK, Lee RS (1968) Freezing of dissociation and recombination in supersonic nozzle flows: part I. General discussion and special analysis. AIAA J 6: 823–837 doi:10.2514/3.4605

    Google Scholar 

  23. Appleton JP (1963) Structure of a Prandtl-Meyer expansion in an ideal dissociating gas. Phys Fluids 6: 1057–1062 doi:10.1063/1.1706862

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Blythe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blythe, P.A. Wave propagation at high dissociation temperatures. J Eng Math 62, 389–403 (2008). https://doi.org/10.1007/s10665-008-9238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-008-9238-y

Keywords

Navigation