Skip to main content
Log in

Fundamental solutions for micropolar fluids

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

New fundamental solutions for micropolar fluids are derived in explicit form for two- and three-dimensional steady unbounded Stokes and Oseen flows due to a point force and a point couple, including the two-dimensional micropolar Stokeslet, the two- and three-dimensional micropolar Stokes couplet, the three-dimensional micropolar Oseenlet, and the three-dimensional micropolar Oseen couplet. These fundamental solutions do not exist in Newtonian flow due to the absence of microrotation velocity field. The flow due to these singularities is useful for understanding and studying microscale flows. As an application, the drag coefficients for a solid sphere or a circular cylinder that translates in a low-Reynolds-number micropolar flow are determined and compared with those corresponding to Newtonian flow. The drag coefficients in a micropolar fluid are greater than those in a Newtonian fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papautsky I, Brazzle J, Ameel T and Frazier AB (1999). Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors Actuators A Physical 73(1–2): 101–108

    Article  Google Scholar 

  2. Shu J-J (2004). Microscale heat transfer in a free jet against a plane surface. Superlattices Microstruct 35(3–6): 645–656

    Article  ADS  Google Scholar 

  3. Eringen AC (2001). Microcontinuum field theories II: fluent Media. Springer-Verlag, New York, Inc

    MATH  Google Scholar 

  4. Stokes GG (1851). On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9(II): 8–106

    Google Scholar 

  5. Oseen CW (1910). Über die Stokes’sche formel und über eine verwandte aufgabe in der hydrodynamik. Arkiv för Matematik 6(29): 1–20

    Google Scholar 

  6. Lorentz HA (1986) Eene algemeene stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen. Zittingsverslag van de Koninklijke Akademie van Wetenschappen te Amsterdam 5:168–175 (in Dutch). Translated into English by Kuiken, HK (1996) A general theorem on the motion of a fluid with friction and a few results derived from it. J Eng Math 30:19–24

  7. Hancock GJ (1953). The self-propulsion of microscopic organisms through liquids. Proc Roy Soc Lond Ser A Math Phys Sci 217(1128): 96–121

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Ladyzhenskaya OA (1961) Mathematical problems of the dynamics for viscous incompressible fluids (Fizmatgiz) (in Russian). English translation, by Gordon and Breach (1963) The mathematical theory of viscous incompressible flow

  9. Kuiken HK (1996). H.A. Lorentz: Sketches of his work on slow viscous flow and some other areas in fluid mechanics and the background against which it arose. J Eng Math 30(1–2): 1–18

    MATH  MathSciNet  Google Scholar 

  10. Shu J-J and Chwang AT (2001). Generalized fundamental solutions for unsteady viscous flows. Phys Rev E 63(5): 051201

    Article  ADS  Google Scholar 

  11. Ramkissoon H and Majumdar SR (1976). Drag on an axially symmetric body in the Stokes’ flow of micropolar fluid. Phys Fluids 19(1): 16–21

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Olmstead WE and Majumdar SR (1983). Fundamental Oseen solution for the 2-dimensional flow of a micropolar fluid. Int J Eng Sci 21(5): 423–430

    Article  MATH  Google Scholar 

  13. Łukaszewicz G (1999). Micropolar fluids: theory and applications. Birkhäuser, Boston

    MATH  Google Scholar 

  14. Zwillinger D (1998) Handbook of differential equations. Academic Press

  15. Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press

  16. Kohr M, Pop I (2004) Viscous incompressible flow for low Reynolds numbers. WIT Press

  17. Lamb H (1911). On the uniform motion of a sphere through a viscous fluid. The London, Edinburgh and Dublin Philos Mag J Sci 21(6): 112–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, JJ., Lee, J.S. Fundamental solutions for micropolar fluids. J Eng Math 61, 69–79 (2008). https://doi.org/10.1007/s10665-007-9160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-007-9160-8

Keywords

Navigation