Skip to main content
Log in

Constrained optimization for interface cracks in composite materials subject to non-penetration conditions

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A constrained problem for a composite material with an interface crack subject to non-penetration conditions is considered. The response of a composite consisting of two identical homogeneous orthotropic materials is described with respect to in-plane deformation. The coupling of the materials occurs at an interface with angle between their vertical planes of elastic symmetry. The model is not split into independent in-plane and anti-plane states. Well-posedness of the problem is proved by variational methods. For numerical computations, a semi-smooth Newton method is proposed and its convergence is studied. Using the proposed algorithms, numerical experiments for an interface crack under mode-3 loading are presented and analyzed with respect to the half-angle defining the coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lur’e AI (1964) Three-dimensional problems in the theory of elasticity. Interscience, New York

    Google Scholar 

  2. Cherepanov GP (1979) Mechanics of brittle fracture. McGraw-Hill, New York

    MATH  Google Scholar 

  3. Morozov NF (1984) Mathematical foundation of the crack theory. Nauka, Moscow (in Russian)

    Google Scholar 

  4. Davidson BD, Krüger R, König M (1995) Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens. Comp Sci Technol 54:385–394

    Article  Google Scholar 

  5. Byron Pipes R, Pagano NJ (1970) Interlaminar stresses in composite laminates under uniform axial extension. J Comp Mater 4:538–548

    Google Scholar 

  6. Khludnev AM, Kovtunenko VA (2000) Analysis of cracks in solids. WIT-Press, Southampton Boston

    Google Scholar 

  7. Khludnev AM, Sokolowski J (1999) The Griffith formula and the Cherepanov-Rice integral for crack problems with unilateral conditions in nonsmooth domains. Eur J Appl Math 10:379–394

    Article  MATH  MathSciNet  Google Scholar 

  8. Ting TCT (1986) Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int J Solids Struct 22:965–983

    Article  MATH  MathSciNet  Google Scholar 

  9. Nazarov SA (1998) The interface crack in anisotropic bodies: stress singularities and invariant integrals. J Appl Maths Mech 62:453–464

    Article  Google Scholar 

  10. Mifflin R (1977) Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim 15:959–972

    Article  MATH  MathSciNet  Google Scholar 

  11. Klatte D, Kummer B (2002) Nonsmooth equations in optimization. Kluwer Publishers, Dordrecht

    MATH  Google Scholar 

  12. Ulbrich M (2003) Semismooth Newton methods for operator equations in function spaces. SIAM J Optim 13:805–842

    Article  MATH  MathSciNet  Google Scholar 

  13. Cottle RW, Pang J-S, Stone RE (1992) The linear complementarity problem. Academic Press, Boston

    MATH  Google Scholar 

  14. Hintermüller M, Kovtunenko VA, Kunisch K (2004) The primal–dual active set method for a crack problem with non- penetration. IMA J Appl Math 69:1–26

    Article  MATH  MathSciNet  Google Scholar 

  15. Hintermüller M, Kovtunenko VA, Kunisch K (2004) Semismooth Newton methods for a class of unilaterally constrained variational problems. Adv Math Sci Appl 14:513–535

    MATH  MathSciNet  Google Scholar 

  16. Hintermüller M, Kovtunenko VA, Kunisch K (2005) Generalized Newton methods for crack problems with non- condition. Numer Methods Partial Differential Equations 21:586–610

    Article  MATH  MathSciNet  Google Scholar 

  17. Hintermüller M, Ito K, Kunisch K (2003) The primal–dual active set strategy as a semismooth Newton method. SIAM J Optim 13:865–888

    Article  MATH  Google Scholar 

  18. Ito K, Kunisch K (2003) Semi-smooth Newton methods for the variational inequalities of the first kind. ESAIM, Math Model Numer Anal 37:41–62

    Article  MATH  MathSciNet  Google Scholar 

  19. Leontiev A, Herskovits J, Eboli C (1998) Optimization theory application to splitted plane bending problems. Int J Solids Struct 35:2679–2694

    Article  MATH  MathSciNet  Google Scholar 

  20. Belhachmi Z, Sac-Epée JM, Sokolowski J (2005) Mixed finite elements methods for smooth domain formulation of crack problems. SIAM J Numer Anal 43:1295–1320

    Article  MATH  MathSciNet  Google Scholar 

  21. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Math Engng 46:131–150

    Article  MATH  Google Scholar 

  22. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Math Engng 48:1549–1570

    Article  MATH  Google Scholar 

  23. Lekhnitskii SG (1963) Theory of elasticity of an anisotropic body. Holden-Day, San Francisco

    Google Scholar 

  24. Kovtunenko VA (2006) Interface cracks in composite orthotropic materials and their delamination via global shape optimization. Optim Eng 7:173–199

    Article  MathSciNet  Google Scholar 

  25. Rice JR (1988) Elastic fracture mechanics concepts for interfacial cracks. Trans ASME Ser E J Appl Mech 55:98–103

    Google Scholar 

  26. König M, Krüger R, Kussmaul K, von Alberti M, Gädke M (1997) Characterizing static and fatigue interlaminar fracture behavior of a first generation graphite/epoxy composite. In: Hooper JS (ed) 13th Composite materials: testing and design 13, ASTM STP 1242, ASTM, 60–81

  27. Hintermüller M, Kovtunenko VA, Kunisch K (2006) An optimization approach for the delamination of a composite material with non-penetration. In: Glowinski R, Zolesio J-P (eds) Free and moving boundaries: analysis, simulation and control, Lecture Notes in Pure and Applied Mathematics 252. Chapman & Hall/CRC (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hintermüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintermüller, M., Kovtunenko, V.A. & Kunisch, K. Constrained optimization for interface cracks in composite materials subject to non-penetration conditions. J Eng Math 59, 301–321 (2007). https://doi.org/10.1007/s10665-006-9113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9113-7

Keywords

Navigation