Journal of Engineering Mathematics

, Volume 56, Issue 3, pp 247–262 | Cite as

An explicit construction of interpolation nodes on the simplex

Original Paper

Abstract

An open question concerns the spatial distribution of nodes that are suitable for high-order Lagrange interpolation on the triangle and tetrahedron. Several current methods used to produce nodal sets with small Lebesgue constants are recalled. A new approach is presented for building nodal distributions of arbitrary order, that is based on curvilinear finite-element techniques. Numerical results are shown which demonstrate that, despite the explicit nature of this construction, the resulting node sets are well suited for interpolation and competitive with existing sets for up to tenth-order polynomial interpolation. Matlab scripts which evaluate the node distributions on the equilateral triangle are included.

Keywords

Simplex Interpolation Nodes Fekete Lebesgue constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bos LP (1983) Bounding the Lebesgue function for Lagrange interpolation in a simplex. J Approx Theory 38:43–59MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fekete M (1923) Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten. Math Zeit 17:228–249CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen Qi, Babuska Ivo (1995) Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comp Meth App Mech Eng 128:405–417MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Taylor M, Wingate B, Vincent RE (2000) An algorithm for computing fekete points in the triangle. SIAM J Num Anal 38:1707–1720MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Heinrichs W (2005) Improved Lebesgue constants on the triangle. J Comp Phys 207:625–638MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Roth MJ (2005) Nodal configurations and Voronoi Tessellations for triangular spectral elements. PhD thesis, University of VictoriaGoogle Scholar
  7. 7.
    Hesthaven JS (1998) From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J Numer Anal 35:655–676MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Stieltjes TJ (1885) Sur quelques théorèmes d’algèbre. Comptes Rendus de l’Academie des Sciences 100:439–440Google Scholar
  9. 9.
    Stieltjes TJ (1885) Sur les polynômes de jacobi. Comptes Rendus Acad Sci 100:620–622Google Scholar
  10. 10.
    Blyth MG, Pozrikidis C (2005) A Lobatto interpolation grid over the triangle. IMA J Appl Math 153–169Google Scholar
  11. 11.
    Bittencourt ML (2005) Fully tensorial nodal and modal shape functions for triangles and tetrahedra. Int J Numer Meth Eng 63:1530–1558MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gordon WN, Hall CA (1973) Construction of curvilinear coordinate systems and application to mesh generation. Int J Num Meth Eng 7:461–477MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Proriol J (1957) Sur une Famille de Polynomes à deux Variables Orthogonaux dans un Triangle. C R Acad Sci Paris 257:2459–2461MathSciNetGoogle Scholar
  14. 14.
    Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-HallGoogle Scholar
  15. 15.
    Brent RP (1973) Algorithms for minimization without derivatives. Prentice-HallGoogle Scholar
  16. 16.
    Hesthaven JS, Teng CH (2000) Stable spectral methods on tetrahedral elements. SIAM J Sci Comp 21:2352–2380MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chen Qi, Babuska Ivo (1996) The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comp Meth App Mech Eng 137:89–94MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: The art of computing scientific, 2nd edn. Cambridge University PressGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Computational and Applied MathematicsRice UniversityHoustonUSA

Personalised recommendations