Skip to main content
Log in

A comparison of interpolation grids over the triangle or the tetrahedron

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A simple strategy for constructing a sequence of increasingly refined interpolation grids over the triangle or the tetrahedron is discussed with the goal of achieving uniform convergence and ensuring high interpolation accuracy. The interpolation nodes are generated based on a one-dimensional master grid comprised of the zeros of the Lobatto, Legendre, Chebyshev, and second-kind Chebyshev polynomials. Numerical computations show that the Lebesgue constant and interpolation accuracy of some proposed grids compare favorably with those of alternative grids constructed by optimization, including the Fekete set. While some sets are clearly preferable to others, no single set can claim uniformly better convergence properties as the number of nodes is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blyth MG, Pozrikidis C (2005) A Lobatto interpolation grid over the triangle. IMA J Appl Math 71:153–169

    Article  MathSciNet  Google Scholar 

  2. Luo H, Pozrikidis C (2006) A Lobatto interpolation grid in the tetrahedron. IMA J Appl Math 71:298–313

    Article  MathSciNet  Google Scholar 

  3. Davis PJ (1975) Interpolation and approximation. Dover, New York

    MATH  Google Scholar 

  4. Pozrikidis C (2005) Introduction to finite and spectral element methods using matlab. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  5. Pozrikidis C (1998) Numerical computation in science and engineering. Oxford University Press, New York

    MATH  Google Scholar 

  6. Pozrikidis C (2002) A practical guide to boundary-element methods with the software library BEMLIB. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  7. Peyret R (2002) Spectral methods for incompressible viscous flow. Springer, New York

    MATH  Google Scholar 

  8. Bos L (1983) Bounding the Lebesgue function for Lagrange interpolation in a simplex. J Approx Theory 38:43–59

    Article  MATH  MathSciNet  Google Scholar 

  9. Taylor MA, Wingate BA, Vincent RE (2000) An algorithm for computing Fekete points in the triangle. SIAM J Num Anal 38:1707–1720

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen Q, Babuška I (1996) The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comput Methods Appl Mech Eng 137:89–94

    Article  MATH  Google Scholar 

  11. Hesthaven JS, Teng CH (2000) Stable spectral methods on tetrahedral elements. SIAM J Sci Comput 21(6):2352–2380

    Article  MATH  MathSciNet  Google Scholar 

  12. Sherwin SJ, Karniadakis GE (1995) A new triangular and tetrahedral basis for high-order (hp) finite element methods. Int J Num Meth Eng 38:3775–3802

    Article  MATH  MathSciNet  Google Scholar 

  13. Karniadakis GE, Sherwin SJ (2005) Spectral/hp element methods for computational fluid dynamics. Oxford University Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Blyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blyth, M.G., Luo, H. & Pozrikidis, C. A comparison of interpolation grids over the triangle or the tetrahedron. J Eng Math 56, 263–272 (2006). https://doi.org/10.1007/s10665-006-9063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9063-0

Keywords

Navigation