Skip to main content
Log in

Magnetic-field calculation for a high-temperature superconducting cryogenic current comparator

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The problem considered in this paper arises in the design of a high-temperature superconducting cryogenic current comparator (CCC). The CCC consists of two currents flowing in opposite directions inside a toroidal superconducting shield. The shield has a radial cut, necessary for the measurement of the current ratio, but causing an error in the obtained ratio. The problem of interest is the dependence of the error on the geometric parameters of the device: the major and minor radii of the shield, the cut width, the material thickness, and the location of the currents. In the first part of the paper, a toroidal shield with an infinitesimal cut is considered and analytic expressions are derived for the magnetic field and the surface-current distribution. In the second part, a cut of finite width is introduced. Since all the perturbing currents are present in the narrow region around the cut, a shield of cylindrical shape is assumed. Expressions are derived for the flux through the cut and the magnetic field around the cut. Analytical results are in good agreement with the numerical results obtained by a finite-element method. In the final part, the expression for the ratio error is derived, which shows that in order to minimize the error, currents should be concentrated around the shield axis, the major radius of the shield should be maximized and the bore radius minimized. The error depends logarithmically on the cut width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witt TJ (1998) Electrical resistance standards and the quantum Hall effect. Rev Sci Instrum 69:2823–2843

    Article  ADS  Google Scholar 

  2. Feltin N, Devoille L, Piquemal F, Lotkhov SV, Zorin AB (2003) Progress in measurements of a single-electron pump by means of a CCC. IEEE Trans Instrum Meas 52:599–603

    Article  Google Scholar 

  3. Rietveld G, Bartolomé E, Sesé J, de la Court P, Flokstra J, Rillo C, Camón A (2003) 1:30000 Cryogenic current comparator with optimum SQUID readout. IEEE Trans Instrum Meas 52:621–625

    Article  Google Scholar 

  4. Williams JM, Kleinschmidt P (1999) A cryogenic current comparator bridge for resistance measurements at currents of up to 100 A. IEEE Trans Instrum Meas 48:375–378

    Article  Google Scholar 

  5. Seppä H, Satrapinski A, Kiviranta M, Virkki V (1999) Thin-film cryogenic current comparator. IEEE Trans Instrum Meas 48:365–369

    Article  Google Scholar 

  6. Piquemal F, Genevés G (2000) Argument for a direct realization of the quantum metrological triangle. Metrologia 37:207–211

    Article  ADS  Google Scholar 

  7. Lotkhov SV, Bogoslovsky SA, Zorin AB, Niemeyer J (2001) Operation of a three-junction single-electron pump with on-chip resistors. Appl Phys Lett 78:946–948

    Article  ADS  Google Scholar 

  8. Bubanja V (2002) Influence of the electromagnetic environment on the accuracy of the single electron pump. J Phys Soc Jpn 71:1501–1505

    Article  ADS  Google Scholar 

  9. Keller MW, Eichenberger AL, Martinis JM, Zimmerman NM (1999) A capacitance standard based on counting electrons. Science 285:1706–1709

    Article  Google Scholar 

  10. Mohr PJ, Taylor BN (2000) CODATA recommended values of the fundamental physical constants: 1998. Rev Mod Phys 72:351–495

    Article  ADS  Google Scholar 

  11. Seppä H (1990) The ratio error of the overlapped-tube cryogenic current comparator. IEEE Trans Instrum Meas 39:689–697

    Article  Google Scholar 

  12. Early MD, Jones K (1999) Optimum sensitivity of an externally shielded cryogenic current comparator. IEEE Trans Instrum Meas 46:459–463

    Article  Google Scholar 

  13. Sesé J, Rietveld G, Camón A, Rillo C, Vargas L, Christian G, Brons S, Hiddink MGH, Flokstra J, Rogalla H, Jaszczuk W, Altenburg H (1999) Design and realisation of an optimal current sensitive CCC. IEEE Trans Instrum Meas 48:370–374

    Article  Google Scholar 

  14. Hao L, Gallop JC, Macfarlane JC, Carr C (2003) HTS cryogenic current comparator for non-invasive sensing of charged particle beams. IEEE Trans Instrum Meas 52:617–620

    Article  Google Scholar 

  15. Elmquist RE (1999) Cryogenic current comparator measurements at 77 K using thallium-2233 thick-film shields. IEEE Trans Instrum Meas 48:383–386

    Article  Google Scholar 

  16. Early MD, Jones K, van Dam MA (2000) Development of an HTS cryogenic current comparator. In: Obradors X, Sandiumenge F, Fontcuberta J (eds) Applied supperconductivity 1999. Institute of Physics Publishing, Bristol, pp 517–520

    Google Scholar 

  17. Early MD, Jones K, Staines MP, Exley RR (2001) Development of a split-toroid high-temperature superconducting cryogenic current comparator. IEEE Trans Instrum Meas 50:306–309

    Article  Google Scholar 

  18. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    MATH  Google Scholar 

  19. Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series, and products. Academic Press, New York

    MATH  Google Scholar 

  20. Cohl HS, Rau ARP, Tohline JE, Browne DA, Cazes JE, Barnes EI (2001) Useful alternative to the multiple expansion of 1/r potentials. Phys Rev A 64:052509

    Article  ADS  Google Scholar 

  21. Cohl HS, Tohline JE (1999) A compact cylindrical Green’s function expansion for the solution of potential problems. Astrophys J 527:86–101

    Article  ADS  Google Scholar 

  22. Cohl HS, Tohline JE, Rau ARP, Srivastava HM (2000) Developments in determining the gravitational potential using toroidal functions. Astron Nachr 321:363–372

    Article  MATH  ADS  Google Scholar 

  23. van Milligen BPh, Lopez Fraguas A (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput Phys Commun 81:74–90

    Article  ADS  Google Scholar 

  24. Krokhmal PA (2002) Exact solution of the displacement boundary-value problem of elasticity for a torus. J. Engng. Math. 44:345–368

    Article  MathSciNet  Google Scholar 

  25. Kevorkian J, Dole JD (1996) Multiple scale and singular perturbation methods. Springer-Verlag, New York

    MATH  Google Scholar 

  26. Levine H, Schwinger J (1948) On the radiation of sound from an unflanged circular pipe. Phys Rev 73:383–406

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Ursescu A, Eckart W, Marschall H, Hutter K (2004) Inhomogeneous electric field generated by two long electrodes placed along infinite walls separating different dielectric media. J Engng Math 49:57–75

    Article  MATH  MathSciNet  Google Scholar 

  28. Abramowitz M, Stegun IA (1972) Hanbook of mathematical functions. Dover Publications, Inc. New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bubanja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubanja, V. Magnetic-field calculation for a high-temperature superconducting cryogenic current comparator. J Eng Math 57, 99–114 (2007). https://doi.org/10.1007/s10665-006-9061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9061-2

Keywords

Navigation