Skip to main content
Log in

Working with multiscale asymptotics

Solving Weakly nonlinear oscillator equations on long-time intervals

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper surveys, compares and updates techniques to obtain the asymptotic solution of the weakly nonlinear oscillator equation ÿ + y +ε f(y, \(\dot{y}\)) =0 as ε → 0 and for corresponding first-order vector systems. The solutions found by the regular perturbation method generally feature resonance and so break down as t → ∞. The classical methods of averaging and multiple scales eliminate such secular behavior and provide asymptotic solutions valid for time intervals of length t=O1). The renormalization group method proposed by Chen et al. [Phys. Rev. E 54 (1996) 376–394] gives equivalent results. Several well-known examples are solved with these methods to demonstrate the respective techniques and the equivalency of the approximations produced. Finally, an amplitude-equation method is derived that incorporates the best features of all these techniques. This method is both straightforward to automate with a computer-algebra system and flexible enough to allow the forcing f to depend on the small parameter

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Minorsky, Introduction to Non-Linear Mechanics: Topological Methods, Analytical Methods, Non-Linear Resonance, Relaxation Oscillations. Ann Arbor: J. W. Edwards (1947) xiv + 464 pp.

  2. Hoppensteadt F.C. (2000). Analysis and Simulation of Chaotic Systems. Volume 94 of Applied Mathematical Sciences 2nd edition. Springer-Verlag, New York xx + 315 pp.

  3. Smith D.R. (1985). Singular-Perturbation Theory: An Introduction with Applications. Cambridge University Press, Cambridge, xvi + 500 pp.

    MATH  Google Scholar 

  4. Murdock J. (1991). Perturbations: Theory and Methods. John Wiley & Sons Inc, New York, xviii + 509 pp

    MATH  Google Scholar 

  5. Sanders J.A., Verhulst F. (1985). Averaging Methods in Nonlinear Dynamical Systems Volume 59 of Applied Mathematical Sciences. Springer-Verlag, New York, x + 247 pp.

    Google Scholar 

  6. O’Malley R.E. Jr. (1991). Singular Perturbation Methods for Ordinary Differential Equations Volume 89 of Applied Mathematical Sciences. Springer-Verlag, New York, viii + 225 pp.

    Google Scholar 

  7. Wasow W. (1965). Asymptotic Expansions for Ordinary Differential Equations. Wiley Interscience, New York, ix + 362 pp.

    MATH  Google Scholar 

  8. Hardy G.H. (1949). Divergent Series. Clarendon Press, Oxford, xvi + 396pp.

    MATH  Google Scholar 

  9. Copson E.T. (1965). Asymptotic Expansions Volume 55 of Cambridge Tracts in Mathematics and Mathematical Physics. Cambridge University Press, New York, vii + 120 pp

    Google Scholar 

  10. Ramis J.-P. (1993). Séries Divergentes et Théories Asymptotiques Volume 121 of Panoramas et Synthèses: Suppl. au bulletin da la SMF. Société Mathématique de France, Paris, 74 pp.

    Google Scholar 

  11. Lagrange J.-L. Méchanique Analitique. Paris: Desaint (1788). English translation: Analytical Mechanics. Dordrecht (Neth.): Kluwer Academic Publishers (1997) xli + 592 pp

  12. Poincaré H. (1993). New Methods of Celestial Mechanics, Vols I–III Volume 13 of History of Modern Physics and Astronomy. Am. Inst. Physics, New York, xxiv + 1078 pp.

    Google Scholar 

  13. Lindstedt A. (1882). Über die Integration einer für die Storungstheorie wichigen Differentialgleichungen. Astron. Nachr. 103:211–220

    Article  ADS  Google Scholar 

  14. Schmidt H. (1937). Beiträge zu einer Theorie der allgemeinen asymptotischen Darstellungen. Math. Ann. 113:629–656

    Article  MathSciNet  MATH  Google Scholar 

  15. Olver F.W.J. (1974). Asymptotics and Special Functions. Academic Press, New York, xvi + 572 pp.

    Google Scholar 

  16. Chen L.-Y., Goldenfeld N., Oono Y. (1996). Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54:376–394

    Article  ADS  Google Scholar 

  17. O’Malley R.E. Jr., Williams D.B. Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations. J. Comput. Appl. Math. (2005) In Press

  18. Kevorkian J., Cole J.D. (1996). Multiple Scale and Singular Perturbation Methods Volume 114 of Applied Mathematical Sciences. Springer-Verlag, New York, viii + 632 pp.

    Google Scholar 

  19. Bluman G., Cook L.P., Flaherty J., Kevorkian J., Malmuth N., O’Malley R.E. Jr., Schwendeman D.W., Tulin M., Julian D. (2000). Cole (1925–1999). Notices Amer. Math. Soc. 47:466–473

    MathSciNet  MATH  Google Scholar 

  20. Kuzmak G.E. (1959). Asymptotic solutions of nonlinear second order differential equations with variable coefficients. J. Appl. Math. Mech. 23:730–744

    Article  MATH  MathSciNet  Google Scholar 

  21. Morrison J.A. (1966). Comparison of the modified method of averaging and the two variable expansion procedure. SIAM Rev. 8 :66–85

    Article  MATH  MathSciNet  Google Scholar 

  22. Mudavanhu B. A New Renormalization Method for the Asymptotic Solution of Multiple-Scale Singular Perturbation Problems. PhD thesis, University of Washington (2002) v + 114 pp

  23. Murdock J., Wang L.-C. (1996). Validity of the multiple scale method for very long intervals. Z. Angew. Math. Phys. 47: 760–789

    Article  MATH  MathSciNet  Google Scholar 

  24. van der Pol B. (1926). On relaxation oscillations. Phil. Mag. 2:978–992

    Google Scholar 

  25. Cesari L. (1963). Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. Academic Press, New York, viii + 271 pp.

    MATH  Google Scholar 

  26. Grimshaw R. (1990). Nonlinear Ordinary Differential Equations. Volume 2 of Applied Mathematics and Engineering Science Texts. Blackwell Scientific Publications Ltd, Oxford

    Google Scholar 

  27. Woodruff S.L. (1993). The use of an invariance condition in the solution of multiple-scale singular perturbation problems: Ordinary differential equations. Stud. Appl. Math. 90:225–248

    MATH  MathSciNet  Google Scholar 

  28. Woodruff S.L. (1995). A uniformly valid asymptotic solution to a matrix system of ordinary differential equations and a proof of its validity. Stud. Appl. Math. 94:393–413

    MATH  MathSciNet  Google Scholar 

  29. Moise I., Ziane M. (2001). Renormalization group method. Applications to partial differential equations. J. Dynam. Diff. Equations 13:275–321

    Article  MATH  MathSciNet  Google Scholar 

  30. Arnold V.I., Kozlov V.V., Neishtadt A.I. (1997). Mathematical Aspects of Classical and Celestial Mechanics. Springer-Verlag, Berlin, xiv + 291 pp. Translated from the 1985 Russian original by A. Iacob

    MATH  Google Scholar 

  31. Grebenikov E.A., Mitropolsky Y.A., Ryabov Y.A. (2004). Asymptotic Methods in Resonance Analytical Dynamics Volume 21 of Stability and Control: Theory, Methods and Applications. Chapman & Hall/CRC, Boca Raton, xx + 255 pp.

    Google Scholar 

  32. Reid W.T. (1971). Ordinary Differential Equations. Wiley-Interscience, New York, xv + 553 pp.

    MATH  Google Scholar 

  33. Bogoliubov N.N., Mitropolsky Y.A. (1961). Asymptotic Methods in the Theory of Non-Linear Oscillations. International Monographs on Advanced Mathematics and Physics. Delhi, Gordon and Breach Science Publishers, New York, x + 537 pp.

    Google Scholar 

  34. Verhulst F. (2005). Methods and Applications of Singular Perturbations. Volume 50 of Texts in Applied Mathematics. Springer, New York, xv+ 324 pp.

    Google Scholar 

  35. Kolesov A.Y., Mishchenko E.F., Rozov N.K. (1999). Solution of singularly perturbed boundary value problems by the “duck hunting” [chasse aux canards] method. Proc. Steklov Inst. Math. 224:169–188

    MathSciNet  Google Scholar 

  36. Perko L.M. (1969). Higher order averaging and related methods for perturbed periodic and quasi-periodic systems. SIAM J. Appl. Math. 17:698–724

    Article  MATH  MathSciNet  Google Scholar 

  37. Murdock J. (1988). Qualitative theory of nonlinear resonance by averaging and dynamical systems methods. In: Kirch-graber U., Walther W.O (eds). Dynamics Reported, Volume 1. John Wiley & Sons, New York, pp. 91–172

    Google Scholar 

  38. Bakhvalov N.S., Panasenko G.P., Shtaras A.L. (1999). The averaging method for partial differential equations (homogenization) and its applications. In: Egorov Y.V., Shubin M.A (eds). Partial Differential Equations V Volume 34 of Encyclopaedia Math. Sci. Springer-Verlag, Berlin, pp. 211–247

    Google Scholar 

  39. Ramis J.-P., Schäfke R. (1996). Gevrey separation of fast and slow variables. Nonlinearity 9:353–384

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. R.E.L. DeVille, A. Harkin, K. Josic and T.J. Kaper, Applications of asymptotic normal form theory and its connections with the renormalization group method. Preprint (2003)

  41. Ei S.-I., Fujii K., Kunihiro T. (2000). Renormalization-group method for reduction of evolution equations; invariant manifolds and envelopes. Ann. Physics 280:236–298

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Oono Y. (2000). Renormalization and asymptotics. Int. J. Modern Physics B 14:1327–1361

    ADS  MathSciNet  Google Scholar 

  43. Nozaki K., Oono Y. (2001). Renormalization-group theoretical reduction. Phys. Rev. E 63:046101

    Article  ADS  Google Scholar 

  44. Promislow K. (2002). A renormalization method for modulational stability of quasi-steady patterns in dispersive systems. SIAM J. Math. Anal. 33:1455–1482

    Article  MATH  MathSciNet  Google Scholar 

  45. Wirosoetisno D., Shepherd T.G., Temam R.M. (2002). Free gravity waves and balanced dynamics. J. Atmos. Sci. 59: 3382–3398

    Article  ADS  MathSciNet  Google Scholar 

  46. van der Corput J.G. (1959/1960). Introduction to the neutrix calculus. J. Analyse Math. 7:281–399

    MathSciNet  Google Scholar 

  47. Peskin M.E., Schroeder D.V. (1995). Introduction to Quantum Field Theory. Addison-Wesley, Reading, xxii + 842 pp.

    Google Scholar 

  48. Whitham G.B. (1974). Linear and Nonlinear Waves. John Wiley & Sons, New York, xvi + 636 pp

    MATH  Google Scholar 

  49. Mudavanhu B., O’Malley R.E. Jr. (2001). A renormalization group method for nonlinear oscillators. Stud. Appl. Math. 107:63–79

    Article  MATH  MathSciNet  Google Scholar 

  50. Tsien H.S. (1956). The Poincaré-Lighthill-Kuo method. In: Advances in Applied Mechanics Vol IV. Academic Press, New York, pp. 281–349

    Google Scholar 

  51. Coullet P.H., Spiegel E.A. (1983). Amplitude equations for systems with competing instabilities. SIAM J. Appl. Math. 43:776–821

    Article  MATH  MathSciNet  Google Scholar 

  52. Eckhaus W. (1992). On modulation equations of the Ginzburg-Landau type. In: O’Malley R.E. Jr (eds). ICIAM 91 (Washington, DC, 1991). SIAM, Philadelphia, pp. 83–98

    Google Scholar 

  53. Budd C.J., Hunt G.W., Kuske R. (2001). Asymptotics of cellular buckling close to the Maxwell load. R. Soc. London Proc. Ser. A Math. Phys. Eng. Sci. 457:2935–2964

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Pedlosky J. (1987). Geophysical Fluid Dynamics. Springer-Verlag, New York, xiv + 710 pp.

    MATH  Google Scholar 

  55. Fujimura K. (1989). The equivalence between two perturbation methods in weakly nonlinear stability theory for parallel shear flows. Proc. R. Soc. London A 424:373–392

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Fujimura K. (1991). Methods of centre manifold and multiple scales in the theory of weakly nonlinear stability for fluid motions. Proc. R. Soc. London A 434:719–733

    MATH  ADS  MathSciNet  Google Scholar 

  57. Fujimura K. (1997). Centre manifold reduction and the Stuart-Landau equation for fluid motions. Proc. R. Soc. London A 453:181–203

    MATH  ADS  MathSciNet  Google Scholar 

  58. Nayfeh A.H. (1993). Method of Normal Forms. John Wiley & Sons Inc, New York, xii + 218 pp.

    Google Scholar 

  59. Cox S.M., Roberts A.J. (1995). Initial conditions for models of dynamical systems. Phys. D 85:126–141

    Article  MATH  MathSciNet  Google Scholar 

  60. Murdock J. Normal Forms and Unfoldings for Local Dynamical Systems. Springer Monographs in Mathematics, New York: Springer-Verlag (2003) xx + 494 pp.

  61. Volosov V.M. (1962). Averaging in systems of ordinary differential equations. Russian Math. Surveys 17:3–126

    Article  MathSciNet  Google Scholar 

  62. Sibuya Y. (2000). The Gevrey asymptotics in the case of singular perturbations. J. Diff. Equations 165:255–314

    Article  MATH  MathSciNet  Google Scholar 

  63. Temam R.M., Wirosoetisno D. (2003). On the solutions of the renormalized equations at all orders. Adv. Diff. Equations 8:1005–1024

    MATH  MathSciNet  Google Scholar 

  64. Andersen C.M., Geer J.F. (1982). Power series expansions for the frequency and period of the limit cycle of the van der Pol equation. SIAM J. Appl. Math. 42:678–693

    Article  MATH  MathSciNet  Google Scholar 

  65. Rubenfeld L.A. (1978). On a derivative-expansion technique and some comments on multiple scaling in the asymptotic approximation of solutions of certain differential equations. SIAM Rev. 20:79–105

    Article  MATH  MathSciNet  Google Scholar 

  66. Kuske R. (2003). Multi-scale analysis of noise-sensitivity near a bifurcation. In: Namachchivaya N.S., Lin Y.K (eds). IUTAM Symposium on Nonlinear Stochastic Dynamics Volume 110 Solid Mech. Appl., Kluwer Academic Publishers, Dordrecht, pp. 147–156

    Google Scholar 

  67. Nipp K. (1988). An algorithmic approach for solving singularly perturbed initial value problems. In: Kirchgraber U., Walther W.O (eds). Dynamics Reported, Volume 1. John Wiley & Sons, New York, pp. 173–263

    Google Scholar 

  68. Kreiss H.-O., Lorenz J. (1994). On the existence of slow manifolds for problems with different timescales. Philos. Trans. R. Soc. London A 346:159–171

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. Strygin V.V., Sobolev V.A. (1988). Separation of Motions by the Method of Integral Manifolds (in Russian). “Nauka”, Moscow 256 pp.

    Google Scholar 

  70. Gear C.W., Kaper T.J., Kevrekidis I.G., Zagaris A. Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. (2005) in Press.

  71. King A.C., Billingham J., Otto S.R. (2003). Differential Equations: Linear, Nonlinear, Ordinary, Partial. Cambridge University Press, Cambridge, xii + 541 pp.

    MATH  Google Scholar 

  72. Haberman R. (2004). Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 4th edition. Pearson Prentice Hall, Upper Saddle River, xviii + 769 pp.

    Google Scholar 

  73. Hairer E., Lubich C., Wanner G. (2002). Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations Volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, xiv + 515 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blessing Mudavanhu.

Additional information

This paper is dedicated to Jerry Kevorkian with sincere appreciation for his long career of dedicated teaching at the University of Washington and for his substantial contributions to multiscale asymptotics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudavanhu, B., O’Malley, R.E. & Williams, D.B. Working with multiscale asymptotics. J Eng Math 53, 301–336 (2005). https://doi.org/10.1007/s10665-005-9002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9002-5

Keywords

Navigation