Empirical Software Engineering

, Volume 21, Issue 4, pp 1533–1578

Automated bug assignment: Ensemble-based machine learning in large scale industrial contexts

  • Leif Jonsson
  • Markus Borg
  • David Broman
  • Kristian Sandahl
  • Sigrid Eldh
  • Per Runeson

DOI: 10.1007/s10664-015-9401-9

Cite this article as:
Jonsson, L., Borg, M., Broman, D. et al. Empir Software Eng (2016) 21: 1533. doi:10.1007/s10664-015-9401-9


Bug report assignment is an important part of software maintenance. In particular, incorrect assignments of bug reports to development teams can be very expensive in large software development projects. Several studies propose automating bug assignment techniques using machine learning in open source software contexts, but no study exists for large-scale proprietary projects in industry. The goal of this study is to evaluate automated bug assignment techniques that are based on machine learning classification. In particular, we study the state-of-the-art ensemble learner Stacked Generalization (SG) that combines several classifiers. We collect more than 50,000 bug reports from five development projects from two companies in different domains. We implement automated bug assignment and evaluate the performance in a set of controlled experiments. We show that SG scales to large scale industrial application and that it outperforms the use of individual classifiers for bug assignment, reaching prediction accuracies from 50 % to 89 % when large training sets are used. In addition, we show how old training data can decrease the prediction accuracy of bug assignment. We advice industry to use SG for bug assignment in proprietary contexts, using at least 2,000 bug reports for training. Finally, we highlight the importance of not solely relying on results from cross-validation when evaluating automated bug assignment.


Machine learning Ensemble learning Classification Bug reports Bug assignment Industrial scale; Large scale 

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Ericsson ABStockholmSweden
  2. 2.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  3. 3.Department of Computer ScienceLund UniversityLundSweden
  4. 4.KTH Royal Institute of TechnologyKistaSweden
  5. 5.UC BerkeleyBerkeleyUSA

Personalised recommendations