Appendix 1: Search equilibrium on the SL policy with w
O
exogenous
Proof of Proposition 2: First, observe that the set X of workers that the firm accepts in SL contract is always an interval (x
+, 1], some x
+. Indeed, by the definition of undominated equilibrium, \({\frac{x}{1-\delta (1-\beta )}}>\delta \Uppi^{SL}(x)\). Hence for any \(x^{\prime }>x,{\frac{x^{\prime}}{1-\delta (1-\beta )}}\geq \delta \Uppi^{SL}\).
When w
O
is fixed exogenously, by Proposition 1, all the workers with \(x\in ({\frac{w_{O}}{\gamma }},1]\) will always reject the STC.
Thus, the search problem faced by the firm may be rewritten, from (6) above, as:
$$ \max \Uppi^{SL}={\frac{\kappa \left[ q\delta (1-\beta )\left( \int_{0}^{x^{-}}xf(x)dx-w_{0}\right) \right] +q\delta ^{2}(1-\beta )^{2}\left[ (\int_{x^{-}}^{x^{+}}xf(x)dx)-Ew_{sl}\right]}{\kappa \left[ 1-\delta (1-qE)-q\delta ^{2}(1-\beta )(1-\int_{x^{+}}^{1}f(x)dx)\right]}} $$
or
$$ \max \Uppi^{SL}={\frac{\kappa \left[ q\delta (1-\beta )\left( \int_{0}^{x^{-}}xf(x)dx-w_{0}\right) \right] +q\delta ^{2}(1-\beta )^{2}\left[ C(\int_{x^{-}}^{x^{+}}xf(x)dx)-D\right]}{\kappa \left[ 1-\delta +qE\delta -q\delta ^{2}(1-\beta )(1-\int_{x^{+}}^{1}f(x)dx) \right]}} $$
(21)
where \(\kappa =(1-\delta (1-\beta )), Ew_{sl}={\frac{\gamma (\int\nolimits_{x^{-}}^{x^{+}}xf(x)dx)+\alpha \delta (1-\beta )w_{O}}{1+\alpha \delta (1-\beta )}}, x^{+}={\frac{w_{O}}{\gamma}}, E\) is the probability to meet a worker in the set [0, x
+).
$$ C={\frac{1-\gamma +\alpha \delta (1-\beta )}{1+\alpha \delta (1-\beta )}}\hbox{ and }D={\frac{\alpha \delta (1-\beta )w_{O}}{1+\alpha \delta (1-\beta )}}. $$
The first-order conditions with respect to x
− are given by
$$ \begin{aligned} &-x^{-}f(x^{-})Cq\delta ^{2}(1-\beta )^{2}(1-\delta (1-\beta ))\left[ \left( 1-\delta +qE\delta -q\delta ^{2}(1-\beta )(1-\int\limits_{x^{-}}^{1}f(x)dx)\right) \right]\\ &\quad+q\delta ^{2}(1-\beta )f(x)(1-\delta (1-\beta ))\\ &\qquad\left[ q\delta ^{2}(1-\beta )^{2}\left[ C(\int\limits_{x^{-}}^{x^{+}}xf(x)dx)-D\right] +(1-\delta (1-\beta ))\left[ q\delta (1-\beta )\left( \int\limits_{0}^{x^{+}}xf(x)dx-w_{0}\right) \right] \right]=0 \end{aligned} $$
or
$$ x^{-}={\frac{q\delta ^{2}(1-\beta )\left( \int\limits_{x^{-}}^{x^{+}}xf(x)dx)-\int\limits_{x^{-}}^{1}f(x)dx-{\frac{D}{C}} \right) +{\frac{\kappa }{C}}\left[ q\delta \left( \int\limits_{0}^{x^{+}}xf(x)dx-w_{0}\right) \right] } {\left[ 1-\delta +qE\delta -q\delta ^{2}(1-\beta )\right] }} $$
(22)
To check that the solution is unique, observe that the left-hand side of Eq. 22 is increasing in x
−, with range (0,1). On the other hand, the right-hand side of Eq. 22 is decreasing in x
−, falling from
$$ {\frac{q\delta ^{2}(1-\beta )\left( \int\nolimits_{x^{-}}^{x^{+}}xf(x)dx)-\int\nolimits_{x^{-}}^{1}f(x)dx-{\frac{D}{C}} \right) +{\frac{\kappa}{C}}\left[ q\delta \left( \int\nolimits_{0}^{x^{+}}xf(x)dx-w_{0}\right) \right]} {\left[ 1-\delta +qE\delta -q\delta ^{2}(1-\beta )\right] }} $$
to \({\frac{q\delta ^{2}(1-\beta )\left( -{\frac{D}{C}}\right) +{\frac{\kappa }{C}}\left[ q\delta \left( \int\nolimits_{0}^{x^{+}}xf(x)dx-w_{0}\right) \right] }{\left[ 1-\delta +qE\delta -q\delta ^{2}(1-\beta )\right] }}\). Hence a unique solution to (22) exists.
Appendix 2: Search equilibrium on the SL policy with w
O
endogenous
Proof of Proposition 3: As in the Proof of Proposition 1, the search problem faced by the firm may be rewritten as
$$ \max \Uppi^{SL}={\frac{\kappa \left[ q\delta (1-\beta )(1-\gamma )\left( \int\nolimits_{0}^{1}xf(x)dx\right) \right] +q\delta ^{2}(1-\beta )^{2}\left[ (1-\gamma )(\int\nolimits_{z}^{1}xf(x)dx)\right] } {\kappa \left( 1-\delta (1-q)-q\delta ^{2}(1-\beta )(1-\int\nolimits_{z}^{1}f(x)dx)\right)}} $$
where κ = (1 − δ(1 − β)) with \(w_{SL}=w_{O}=\gamma x\).
The first-order conditions with respect to z are given by
$$ \begin{aligned} &-zf(z)q\delta ^{2}(1-\beta )^{2}(1-\gamma )\left[ (1-\delta (1-\beta ))\left( 1-\delta +q\delta -q\delta ^{2}(1-\beta )(1-\int\limits_{z}^{1}f(x)dx)\right) \right]\\ &\quad+q\delta ^{2}(1-\beta )f(z)(1-\delta (1-\beta ))\\ &\qquad\left[ q\delta ^{2}(1-\beta )^{2}(1-\gamma )\left[ (\int\limits_{z}^{1}xf(x)dx)\right] +\left( 1-\delta (1-\beta )\right) \left( q\delta (1-\beta )(1-\gamma )\left( \int\limits_{0}^{1}xf(x)dx\right) \right) \right] =0 \end{aligned} $$
or
$$ z={\frac{q\delta}{1-\delta +q\delta -q\delta ^{2}(1-\beta )}}\left[ \delta (1-\beta )\left( \int\limits_{z}^{1}(x-z)f(x)dx\right) +\kappa \left( \int\limits_{0}^{1}xf(x)dx\right) \right] $$
(23)
To check that the solution is unique, observe that the left-hand side of Eq. 23 is increasing in z, with range (0,1). On the other hand, the right-hand side of Eq. 23 is decreasing in z, falling from
$$ {\frac{q\delta}{1-\delta +q\delta -q\delta ^{2}(1-\beta )}}\left[ \delta (1-\beta )\left( \int\limits_{0}^{1}(x-z)f(x)dx\right) +\kappa \left( \int\limits_{0}^{1}xf(x)dx\right) \right] $$
to \({\frac{q\delta}{1-\delta +q\delta -q\delta ^{2}(1-\beta)}}\left[ \kappa \left( \int\nolimits_{0}^{1}xf(x)dx\right) \right].\) Hence a unique solution to (23) exists.