Skip to main content
Log in

Sustainable struggling: decoding microplastic released from bioplastics—a critical review

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

PBAT:

Polybutylene adipate terephthalate

PLA:

Polylactic acid

PHA:

Polyhydroxy-alkanoates

PBS:

Polybutylene succinate

PCL:

Polycaprolactone

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PE:

Polyethylene

PP:

Polypropylene

PET:

Polyethylene terephthalate

PS:

Polystyrene

LDPE:

Low-density polyethylene

BDPs:

Biodegradable plastics

BDMPs:

Biodegradable microplastics

NBDMPs:

Non-biodegradable microplastics

MPs:

Microplastics

References

  • Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment, 5(01), 23.

    Article  CAS  Google Scholar 

  • Agarwal, S. (2020). Biodegradable polymers: Present opportunities and challenges in providing a microplastic-free environment. Macromolecular Chemistry and Physics, 221(6), 2000017.

    Article  CAS  Google Scholar 

  • Ahsan, W. A., Hussain, A., Lin, C., & Nguyen, M. K. (2023). Biodegradation of different types of bioplastics through composting—A recent trend in green recycling. Catalysts, 13(2), 294.

    Article  CAS  Google Scholar 

  • Aslam, S., Khurram, A., Hussain, R., Qadir, A., & Ahmad, S. R. (2023). Sources, distribution, and incipient threats of polymeric microplastic released from food storage plastic materials. Environmental Monitoring and Assessment, 195(6), 638.

    Article  CAS  Google Scholar 

  • Balestri, E., Menicagli, V., Ligorini, V., Fulignati, S., Galletti, A. M. R., & Lardicci, C. (2019). Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecological Indicators, 102, 569–580.

    Article  CAS  Google Scholar 

  • Balestri, E., Menicagli, V., Vallerini, F., & Lardicci, C. (2017). Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows? Science of the Total Environment, 605, 755–763.

    Article  Google Scholar 

  • Bandopadhyay, S., Sintim, H. Y., & DeBruyn, J. M. (2020). Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ, 8, e9015.

    Article  Google Scholar 

  • Barrick, A., Champeau, O., Chatel, A., Manier, N., Northcott, G., & Tremblay, L. A. (2021). Plastic additives: Challenges in ecotox hazard assessment. PeerJ, 9, e11300.

    Article  Google Scholar 

  • Bettas Ardisson, G., Tosin, M., Barbale, M., & Degli-Innocenti, F. (2014). Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Frontiers in Microbiology, 5, 710.

    Article  Google Scholar 

  • Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19), 11496–11506.

    Article  CAS  Google Scholar 

  • Broeren, M. L., Kuling, L., Worrell, E., & Shen, L. (2017). Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resources, Conservation and Recycling, 127, 246–255.

    Article  Google Scholar 

  • Brown, R. W., Chadwick, D. R., Zang, H., Graf, M., Liu, X., Wang, K., Greenfield, L. M., & Jones, D. L. (2023). Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize. Journal of Hazardous Materials, 441, 129959.

    Article  CAS  Google Scholar 

  • Capolupo, M., Sørensen, L., Jayasena, K. D. R., Booth, A. M., & Fabbri, E. (2020). Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Research, 169, 115270.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, Y., Sun, X., Peng, Y., & Xiao, L. (2020). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271.

    Article  CAS  Google Scholar 

  • Chen, S. C., Wang, X. L., Wang, Y. Z., Yang, K. K., Zhou, Z. X., & Wu, G. (2007). In vitro degradation of biodegradable blending materials based on poly (p-dioxanone) and poly (vinyl alcohol)-graft-poly (p-dioxanone) with high molecular weights. Journal of Biomedical Materials Research. Part A, 80(2), 453–465.

    Article  Google Scholar 

  • de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416.

    Article  Google Scholar 

  • Ding, W., Li, Z., Qi, R., Jones, D. L., Liu, Q., Liu, Q., & Yan, C. (2021). Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Science of the Total Environment, 781, 146884.

    Article  CAS  Google Scholar 

  • Duan, Z., Cheng, H., Duan, X., Zhang, H., Wang, Y., Gong, Z., Zhang, H., Sun, H., & Wang, L. (2022). Diet preference of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis. Journal of Hazardous Materials, 429, 128332.

    Article  CAS  Google Scholar 

  • Emadian, S. M., Onay, T. T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526–536.

    Article  CAS  Google Scholar 

  • European Bioplastics. (2022). Bioplastics Market Development Update. https://www.european-bioplastics.org/market(2022)

  • Fan, X., Zou, Y., Geng, N., Liu, J., Hou, J., Li, D., Yang, C., & Li, Y. (2021). Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. Journal of Hazardous Materials, 401, 123363.

    Article  CAS  Google Scholar 

  • Fontanazza, S., Restuccia, A., Mauromicale, G., Scavo, A., & Abbate, C. (2021). Pseudomonas putida isolation and quantification by real-time PCR in agricultural soil biodegradable mulching. Agriculture, 11(8), 782.

    Article  CAS  Google Scholar 

  • Gioacchini, P., Cattaneo, F., Barbanti, L., Montecchio, D., Ciavatta, C., & Marzadori, C. (2016). Carbon sequestration and distribution in soil aggregate fractions under Miscanthus and giant reed in the Mediterranean area. Soil and Tillage Research, 163, 235–242.

    Article  Google Scholar 

  • Giraldo-Montoya, J. M., Castaño-Villa, G. J., & Rivera-Páez, F. A. (2020). Bacteria from industrial waste: Potential producers of polyhydroxyalkanoates (PHAs) in Manizales, Colombia. Environmental Monitoring and Assessment, 192, 1–8.

    Article  Google Scholar 

  • González-Pleiter, M., Tamayo-Belda, M., Pulido-Reyes, G., Amariei, G., Leganés, F., Rosal, R., & Fernández-Piñas, F. (2019). Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environmental Science. Nano, 6(5), 1382–1392.

    Article  Google Scholar 

  • Gouin, T., Roche, N., Lohmann, R., & Hodges, G. (2011). A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environmental Science & Technology, 45(4), 1466–1472.

    Article  CAS  Google Scholar 

  • Green, D. S. (2016). Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environmental Pollution, 216, 95–103.

    Article  CAS  Google Scholar 

  • Green, D. S., Boots, B., Blockley, D. J., Rocha, C., & Thompson, R. (2015). Impacts of discarded plastic bags on marine assemblages and ecosystem functioning. Environmental Science & Technology, 49(9), 5380–5389.

    Article  CAS  Google Scholar 

  • Green, D. S., Boots, B., Sigwart, J., Jiang, S., & Rocha, C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environmental Pollution, 208, 426–434.

    Article  CAS  Google Scholar 

  • Gunaalan, K., Fabbri, E., & Capolupo, M. (2020). The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Research, 184, 116170.

    Article  CAS  Google Scholar 

  • Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie, International Edition, 58(1), 50–62.

    Article  CAS  Google Scholar 

  • Harrison, J. P., Boardman, C., O'Callaghan, K., Delort, A.-M., & Song, J. (2018). Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. Royal Society Open Science, 5(5), 171792.

    Article  Google Scholar 

  • Hartmann, N. B., Rist, S., Bodin, J., Jensen, L. H., Schmidt, S. N., Mayer, P., Meibom, A., & Baun, A. (2017). Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 13(3), 488–493.

    Article  Google Scholar 

  • Huang, C.-W., Li, Y.-L., Lin, C., Bui, X.-T., & Ngo, H. H. (2023). Seasonal influence on pollution index and risk of multiple compositions of microplastics in an urban river. Science of the Total Environment, 859, 160021.

    Article  CAS  Google Scholar 

  • Huerta-Lwanga, E., Mendoza-Vega, J., Ribeiro, O., Gertsen, H., Peters, P., & Geissen, V. (2021). Is the polylactic acid fiber in green compost a risk for Lumbricus terrestris and Triticum aestivum? Polymers, 13(5), 703.

    Article  CAS  Google Scholar 

  • Inubushi, K., Kakiuchi, Y., Suzuki, C., Sato, M., Ushiwata, S. Y., & Matsushima, M. Y. (2022). Effects of biodegradable plastics on soil properties and greenhouse gas production. Soil Science & Plant Nutrition, 68(1), 183–188.

    Article  CAS  Google Scholar 

  • Jaapar, A. N., Md Amin, R., Bhubalan, K., & Sohaimi, E. S. (2021). Changes in the development and reproductive output of Nitokra lacustris pacifica (Crustacea: Copepoda) Yeatman, 1983 under short and long term exposure to synthetic and biodegradable microbeads. Journal of Polymers and the Environment, 29(12), 4060–4072.

    Article  CAS  Google Scholar 

  • Jacques, O., & Prosser, R. (2021). A probabilistic risk assessment of microplastics in soil ecosystems. Science of the Total Environment, 757, 143987.

    Article  CAS  Google Scholar 

  • Jansens, K. J., Bruyninckx, K., Redant, L., Lagrain, B., Brijs, K., Goderis, B. & Delcour, J. A. (2014). Importance of crosslinking and disulfide bridge reduction for the mechanical properties of rigid wheat gluten bioplastics compression molded with thiol and/or disulfide functionalized additives. Journal of Applied Polymer Science, 131(23).

  • John, J., Nandhini, A.R., Velayudhaperumal Chellam, P., & Sillanpaa, M. (2022). Microplastics in mangroves and coral reef ecosystems: a review. Environmental Chemistry Letters, 20(1), 397–416.

  • Ju, Z., Du, X., Feng, K., Li, S., Gu, S., Jin, D., & Deng, Y. (2021). The succession of bacterial community attached on biodegradable plastic mulches during the degradation in soil. Frontiers in Microbiology, 12, 785737.

    Article  Google Scholar 

  • Juodeikiene, G., Vidmantiene, D., Basinskiene, L., Cernauskas, D., Bartkiene, E., & Cizeikiene, D. (2015). Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis. Catalysis Today, 239, 11–16.

    Article  CAS  Google Scholar 

  • Keswani, A., Oliver, D. M., Gutierrez, T., & Quilliam, R. S. (2016). Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 118, 10–19.

    Article  CAS  Google Scholar 

  • Klein, K., Piana, T., Lauschke, T., Schweyen, P., Dierkes, G., Ternes, T., Schulte-Oehlmann, U., & Oehlmann, J. (2021). Chemicals associated with biodegradable microplastic drive the toxicity to the freshwater oligochaete Lumbriculus variegatus. Aquatic Toxicology, 231, 105723.

    Article  CAS  Google Scholar 

  • Klein, S., Dimzon, I. K., Eubeler, J., & Knepper, T. P. (2018). Analysis, occurrence, and degradation of microplastics in the aqueous environment. Freshwater microplastics: emerging environmental contaminants?, 51-67.

  • Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7), 3315–3326.

    Article  CAS  Google Scholar 

  • Konti, A., Mamma, D., Scarlat, N., & Damigos, D. (2022). The determinants of the growth of the European bioplastics sector—A fuzzy cognitive maps approach. Sustainability, 14(10), 6035.

    Article  Google Scholar 

  • Lambert, S., & Wagner, M. (2016). Formation of microscopic particles during the degradation of different polymers. Chemosphere, 161, 510–517.

    Article  CAS  Google Scholar 

  • Lambert, S., & Wagner, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46(22), 6855–6871.

    Article  CAS  Google Scholar 

  • Lee, D.-H. (2016). Bio-based economies in Asia: Economic analysis of development of bio-based industry in China, India, Japan, Korea, Malaysia and Taiwan. International Journal of Hydrogen Energy, 41(7), 4333–4346.

    Article  CAS  Google Scholar 

  • Lehmann, A., Fitschen, K., & Rillig, M. C. (2019). Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3(1), 21.

    Article  CAS  Google Scholar 

  • Li, C., Cui, Q., Li, Y., Zhang, K., Lu, X., & Zhang, Y. (2022). Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation. Journal of Hazardous Materials, 429, 128353.

    Article  CAS  Google Scholar 

  • Li, R., Liu, Y., Sheng, Y., Xiang, Q., Zhou, Y., & Cizdziel, J. V. (2020). Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environmental Pollution, 260, 113988.

    Article  CAS  Google Scholar 

  • Li, S., Ding, F., Flury, M., & Wang, J. (2023). Dynamics of macroplastics and microplastics formed by biodegradable mulch film in an agricultural field. Science of the Total Environment, 894, 164674.

  • Li, X., Chen, Y., Gao, W., Mo, A., Zhang, Y., Jiang, J., & He, D. (2023). Prominent toxicity of isocyanates and maleic anhydrides to Caenorhabditis elegans: Multilevel assay for typical organic additives of biodegradable plastics. Journal of Hazardous Materials, 442, 130051.

    Article  CAS  Google Scholar 

  • Lin, C., Cheruiyot, N. K., Bui, X.-T., & Ngo, H. H. (2022). Composting and its application in bioremediation of organic contaminants. Bioengineered, 13(1), 1073–1089.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, P., Wang, Y., Zhang, Y., Xu, T., Zhang, Y., Xi, J., Hou, L., Li, L., & Zhang, Z. (2022). Negative effects of poly (butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. Journal of Hazardous Materials, 437, 129294.

    Article  CAS  Google Scholar 

  • Liu, R., Liang, J., Yang, Y., Jiang, H., & Tian, X. (2023). Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth. Chemosphere, 329, 138504.

    Article  CAS  Google Scholar 

  • Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., da Luz, T. M., & de Lima Rodrigues, A. S. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles:(Eco) toxicological safety or environmental hazard? Science of the Total Environment, 783, 146994.

    Article  CAS  Google Scholar 

  • Martin-Closas, L., Botet, R., & Pelacho, A. (2014). An in vitro crop plant ecotoxicity test for agricultural bioplastic constituents. Polymer Degradation and Stability, 108, 250–256.

    Article  CAS  Google Scholar 

  • Masui, A., Ikawa, S., Fujiwara, N., & Hirai, H. (2011). Influence for soil environment by continuing use of biodegradable plastic. Journal of Polymers and the Environment, 19, 622–627.

    Article  CAS  Google Scholar 

  • Meng, F., Yang, X., Riksen, M., & Geissen, V. (2022). Effect of different polymers of microplastics on soil organic carbon and nitrogen–A mesocosm experiment. Environmental Research, 204, 111938.

    Article  CAS  Google Scholar 

  • Mohery, M., Mindil, A., & Soliman, M. (2024). Assessing the adverse impacts of biodegradable plastic bags: Chemical elements and radionuclides considerations. Journal of Environmental Chemical Engineering, 12(1), 111887.

    Article  CAS  Google Scholar 

  • Moreno, M., & Moreno, A. (2008). Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Scientia Horticulturae, 116(3), 256–263.

    Article  CAS  Google Scholar 

  • Morone, P., Tartiu, V. E., & Falcone, P. (2015). Assessing the potential of biowaste for bioplastics production through social network analysis. Journal of Cleaner Production, 90, 43–54.

    Article  Google Scholar 

  • Muncke, J., Backhaus, T., Geueke, B., Maffini, M. V., Martin, O. V., Myers, J. P., Soto, A. M., Trasande, L., Trier, X., & Scheringer, M. (2017). Scientific challenges in the risk assessment of food contact materials. Environmental Health Perspectives, 125(9), 095001.

    Article  Google Scholar 

  • Nguyen, M. K., Lin, C., Hung, N. T. Q., Vo, D.-V. N., Nguyen, K. N., Thuy, B. T. P., Hoang, H. G., & Tran, H. T. (2022). Occurrence and distribution of microplastics in peatland areas: A case study in Long An province of the Mekong Delta, Vietnam. Science of the Total Environment, 844, 157066.

    Article  CAS  Google Scholar 

  • Nguyen, M.-K., Lin, C., Nguyen, H.-L., Le, V.-R., Priya, K., Singh, J., Chang, S. W., Um, M.-J., & Nguyen, D. D. (2023). Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: The insights into Vietnam. Journal of Environmental Management, 344, 118499.

    Article  CAS  Google Scholar 

  • Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., De Wit, C. A., Diamond, M. L., Fantke, P., Hassellöv, M., MacLeod, M., & Ryberg, M. W. (2022). Outside the safe operating space of the planetary boundary for novel entities. Environmental Science & Technology, 56(3), 1510–1521.

    Article  CAS  Google Scholar 

  • Picó, Y., & Barceló, D. (2019). Analysis and prevention of microplastics pollution in water: Current perspectives and future directions. ACS Omega, 4(4), 6709–6719.

    Article  Google Scholar 

  • Qi, Y., Beriot, N., Gort, G., Lwanga, E. H., Gooren, H., Yang, X., & Geissen, V. (2020). Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environmental Pollution, 266, 115097.

    Article  CAS  Google Scholar 

  • Qi, Y., Yang, X., Pelaez, A. M., Lwanga, E. H., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2018). Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048–1056.

    Article  CAS  Google Scholar 

  • Ren, X., Wang, L., Tang, J., Sun, H., & Giesy, J. P. (2022). Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes. Environmental Pollution, 294, 118516.

    Article  CAS  Google Scholar 

  • Ribba, L., Lopretti, M., de Oca-Vásquez, G. M., Batista, D., Goyanes, S., & Vega-Baudrit, J. R. (2022). Biodegradable plastics in aquatic ecosystems: Latest findings, research gaps, and recommendations. Environmental Research Letters, 17(3), 033003.

    Article  CAS  Google Scholar 

  • Richard, H., Carpenter, E. J., Komada, T., Palmer, P. T., & Rochman, C. M. (2019). Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Science of the Total Environment, 683, 600–608.

    Article  CAS  Google Scholar 

  • Rohrbeck, M., Körsten, S., Fischer, C. B., Wehner, S., & Kessler, B. (2013). Diamond-like carbon coating of a pure bioplastic foil. Thin Solid Films, 545, 558–563.

    Article  CAS  Google Scholar 

  • Rujnić-Sokele, M., & Pilipović, A. (2017). Challenges and opportunities of biodegradable plastics: A mini review. Waste Management & Research, 35(2), 132–140.

    Article  Google Scholar 

  • Rychter, P., Biczak, R., Herman, B., Smyłła, A., Kurcok, P., Adamus, G., & Kowalczuk, M. (2006). Environmental degradation of polyester blends containing atactic poly (3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules, 7(11), 3125–3131.

    Article  CAS  Google Scholar 

  • Savva, K., Borrell, X., Moreno, T., Pérez-Pomeda, I., Barata, C., Llorca, M., & Farré, M. (2023). Cytotoxicity assessment and suspected screening of plastic additives in bioplastics of single-use household items. Chemosphere, 313, 137494.

    Article  CAS  Google Scholar 

  • Serrano-Ruíz, H., Eras, J., Martín-Closas, L., & Pelacho, A. (2020). Compounds released from unused biodegradable mulch materials after contact with water. Polymer Degradation and Stability, 178, 109202.

    Article  Google Scholar 

  • Sforzini, S., Oliveri, L., Chinaglia, S., & Viarengo, A. (2016). Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics. Frontiers in Environmental Science, 4, 68.

    Article  Google Scholar 

  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265.

    Article  CAS  Google Scholar 

  • Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., & Tang, W. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 263, 114469.

    Article  CAS  Google Scholar 

  • Shi, M., Xie, Q., Li, Z.-L., Pan, Y.-F., Yuan, Z., Lin, L., Xu, X.-R., & Li, H.-X. (2023). Adsorption of heavy metals on biodegradable and conventional microplastics in the Pearl River Estuary, China. Environmental Pollution, 322, 121158.

    Article  CAS  Google Scholar 

  • Shruti, V., & Kutralam-Muniasamy, G. (2019). Bioplastics: Missing link in the era of Microplastics. Science of the Total Environment, 697, 134139.

    Article  CAS  Google Scholar 

  • Shruti, V., Kutralam-Muniasamy, G., & Pérez-Guevara, F. (2023). Do microbial decomposers find micro-and nanoplastics to be harmful stressors in the aquatic environment? A systematic review of in vitro toxicological research. Science of the Total Environment, 903, 166561.

  • Sintim, H. Y., Bary, A. I., Hayes, D. G., English, M. E., Schaeffer, S. M., Miles, C. A., Zelenyuk, A., Suski, K., & Flury, M. (2019). Release of micro-and nanoparticles from biodegradable plastic during in situ composting. Science of the Total Environment, 675, 686–693.

    Article  CAS  Google Scholar 

  • Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., English, M. E., Bandopadhyay, S., Schaeffer, S. M., DeBruyn, J. M., & Miles, C. A. (2020). In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Science of the Total Environment, 727, 138668.

    Article  CAS  Google Scholar 

  • Soroudi, A., & Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 49(10), 2839–2858.

    Article  CAS  Google Scholar 

  • Souza, P. M. S., Corroqué, N. A., Morales, A. R., Marin-Morales, M. A., & Mei, L. H. I. (2013). PLA and organoclays nanocomposites: degradation process and evaluation of ecotoxicity using Allium cepa as test organism. Journal of Polymers and the Environment, 21, 1052–1063.

    Article  CAS  Google Scholar 

  • Spiridon, I., Leluk, K., Resmerita, A. M., & Darie, R. N. (2015). Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering, 69, 342–349.

    Article  CAS  Google Scholar 

  • Su, Y., Cheng, Z., Hou, Y., Lin, S., Gao, L., Wang, Z., Bao, R., & Peng, L. (2022). Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquatic Toxicology, 244, 106097.

    Article  CAS  Google Scholar 

  • Sun, C., Huang, Z., Liu, Y., Li, C., Tan, H., & Zhang, Y. (2020). The effect of carbodiimide on the stability of wood fiber/poly (lactic acid) composites during soil degradation. Journal of Polymers and the Environment, 28, 1315–1325.

    Article  CAS  Google Scholar 

  • Sun, X.-D., Yuan, X.-Z., Jia, Y., Feng, L.-J., Zhu, F.-P., Dong, S.-S., Liu, J., Kong, X., Tian, H., & Duan, J.-L. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9), 755–760.

    Article  CAS  Google Scholar 

  • Tong, H., Hu, X., Zhong, X., & Jiang, Q. (2021). Adsorption and desorption of triclosan on biodegradable polyhydroxybutyrate microplastics. Environmental Toxicology and Chemistry, 40(1), 72–78.

    Article  CAS  Google Scholar 

  • Uribe-Echeverría, T., & Beiras, R. (2022). Acute toxicity of bioplastic leachates to Paracentrotus lividus sea urchin larvae. Marine Environmental Research, 176, 105605.

    Article  Google Scholar 

  • Verdú, I., González-Pleiter, M., Leganés, F., Rosal, R., & Fernandez-Pinas, F. (2021). Microplastics can act as vector of the biocide triclosan exerting damage to freshwater microalgae. Chemosphere, 266, 129193.

    Article  Google Scholar 

  • Wang, F., Zhang, X., Zhang, S., Zhang, S., & Sun, Y. (2020). Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254, 126791.

    Article  CAS  Google Scholar 

  • Wang, W., Gao, H., Jin, S., Li, R., & Na, G. (2019). The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicology and Environmental Safety, 173, 110–117.

    Article  CAS  Google Scholar 

  • Wang, Y., Ding, K., Ren, L., Peng, A., & Zhou, S. (2022). Biodegradable microplastics: A review on the interaction with pollutants and influence to organisms. Bulletin of Environmental Contamination and Toxicology, 108(6), 1006–1012.

    Article  CAS  Google Scholar 

  • Wei, X.-F., Bohlén, M., Lindblad, C., Hedenqvist, M., & Hakonen, A. (2021). Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Research, 198, 117123.

    Article  CAS  Google Scholar 

  • Wu, X., Lu, J., Du, M., Xu, X., Beiyuan, J., Sarkar, B., Bolan, N., Xu, W., Xu, S., & Chen, X. (2021). Particulate plastics-plant interaction in soil and its implications: A review. Science of the Total Environment, 792, 148337.

    Article  CAS  Google Scholar 

  • Yan, S., Biswal, B. K., & Balasubramanian, R. (2023). Insights into interactions of biodegradable and non-biodegradable microplastics with heavy metals. Environmental Science and Pollution Research, 30(49), 107419–107434.

  • Yang, W., Cheng, P., Adams, C. A., Zhang, S., Sun, Y., Yu, H., & Wang, F. (2021). Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry, 155, 108179.

    Article  CAS  Google Scholar 

  • Yang, X., Cheng, J., Franks, A. E., Huang, X., Yang, Q., Cheng, Z., Liu, Y., Ma, B., Xu, J., & He, Y. (2023). Loss of microbial diversity weakens specific soil functions, but increases soil ecosystem stability. Soil Biology and Biochemistry, 177, 108916.

    Article  CAS  Google Scholar 

  • Yang, Y., Li, Z., Yan, C., Chadwick, D., Jones, D. L., Liu, E., Liu, Q., Bai, R., & He, W. (2022). Kinetics of microplastic generation from different types of mulch films in agricultural soil. Science of the Total Environment, 814, 152572.

    Article  CAS  Google Scholar 

  • Yu, Y., Chen, Y., Wang, Y., Xue, S., Liu, M., Tang, D. W., Yang, X., & Geissen, V. (2023). Response of soybean and maize roots and soil enzyme activities to biodegradable microplastics contaminated soil. Ecotoxicology and Environmental Safety, 262, 115129.

    Article  CAS  Google Scholar 

  • Zawieja, I. (2023). Single-use ordinary plastics vs. bioplastics. Microplastics in the Ecosphere: Air, Water, Soil, and Food, 405–413.

  • Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environmental Science & Technology, 54(7), 3740–3751.

    Article  CAS  Google Scholar 

  • Zhang, X., Xia, M., Su, X., Yuan, P., Li, X., Zhou, C., Wan, Z., & Zou, W. (2021). Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. Journal of Hazardous Materials, 413, 125321.

    Article  CAS  Google Scholar 

  • Zhao, Z.-Y., Wang, P.-Y., Wang, Y.-B., Zhou, R., Koskei, K., Munyasya, A. N., Liu, S.-T., Wang, W., Su, Y.-Z., & Xiong, Y.-C. (2021). Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. Journal of Hazardous Materials, 416, 125954.

    Article  CAS  Google Scholar 

  • Zhou, J., Gui, H., Banfield, C. C., Wen, Y., Zang, H., Dippold, M. A., Charlton, A., & Jones, D. L. (2021). The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry, 156, 108211.

    Article  CAS  Google Scholar 

  • Zhou, J., Wen, Y., Marshall, M. R., Zhao, J., Gui, H., Yang, Y., Zeng, Z., Jones, D. L., & Zang, H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, 147444.

    Article  CAS  Google Scholar 

  • Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C., & Wagner, M. (2019). Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environmental Science & Technology, 53(19), 11467–11477.

    Article  CAS  Google Scholar 

  • Zimmermann, L., Dombrowski, A., Völker, C., & Wagner, M. (2020). Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environment International, 145, 106066.

    Article  CAS  Google Scholar 

  • Zuo, L.-Z., Li, H.-X., Lin, L., Sun, Y.-X., Diao, Z.-H., Liu, S., Zhang, Z.-Y., & Xu, X.-R. (2019). Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co-terephtalate) microplastics. Chemosphere, 215, 25–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wazir Aitizaz Ahsan: Conceptualization, Original draft writing, Editing, and Revising the final draft; Chitsan Lin: Supervision, Validation; Adnan Hussain: Reviewing and Editing.; Mahshab Sheraz Visualization and Validation. All authors have read and agreed to the published version of the manuscript the manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Chitsan Lin.

Ethics declarations

Ethics approval and consent to participate

The research does not deal with human nor animal data. 

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, W.A., Lin, C., Hussain, A. et al. Sustainable struggling: decoding microplastic released from bioplastics—a critical review. Environ Monit Assess 196, 554 (2024). https://doi.org/10.1007/s10661-024-12721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12721-z

Keywords

Navigation