Skip to main content
Log in

Microbiological assessment of ready-to-eat foods and drinking water sources as a potential vehicle of bacterial pathogens in northern India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Foodborne illnesses caused by the consumption of contaminated foods have frequent occurrences in developing countries. The incorporation of contaminated water in food processes, preparation, and serving is directly linked to several gastrointestinal infections. Keeping in view, this study was conducted to assess the microbial quality of both drinking water sources and commonly consumed fresh ready-to-eat (RTE) foods in the region. The drinking water samples from water sources and consumer points, as well as food samples from canteens, cafes, hotels, and restaurants, were collected for the microbiological analysis. Fifty-five percent (n = 286) of water samples were found to be positive for total coliforms with MPN counts ranging from 3 to 2600 (100 ml) −1. E. coli was detected in nearly 30% of the total water samples. Overall, 65% tap water samples were found unsatisfactory, followed by submersible (53%), filter (40%), and WTP (30%) sources. Furthermore, the examination of RTE foods (n = 80) found that 60% were of unsatisfactory microbial quality with high aerobic plate counts. The salads were the most contaminated category with highest mean APC 8.3 log CFU/g followed by pani puri, chats, and chutneys. Presence of coliforms and common enteropathogens was observed in both water and food samples. The detected isolates from the samples were identified as Enterobacter spp., Klebsiella spp., Pseudomonas aeruginosa, Salmonella spp., Shigella spp., and Staphylococcus spp. Based on these findings, microbiological quality was found compromised and this may pose hazard to public health. This exploratory study in the Punjab region also suggests that poor microbiological quality of water sources can be an important source of contamination for fresh uncooked RTE foods, thus transferring pathogens to the food chain. Therefore, only safe potable drinking water post-treatment should be used at all stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data associated with the research is mentioned in the manuscript.

References

  • Abakari, G., Cobbina, S. J., & Yeleliere, E. (2018). Microbial quality of ready-to-eat vegetable salads vended in the central business district of Tamale Ghana. International Journal of Food Contamination, 5, 1. https://doi.org/10.1186/s40550-018-0065-2

    Article  Google Scholar 

  • Adhikari, S., Sharma Regmi, R., Sapkota, S., Khadka, S., Patel, N., Gurung, S., Thapa, D., Bhattarai, P., Sapkota, P., Devkota, R., Ghimire, A., & Rijal, K. R. (2023). Multidrug resistance biofilm formation and detection of blaCTX-M and blaVIM genes in E coli and Salmonella isolates from chutney served at the street-food stalls of Bharatpur Nepal. Heliyon, 9(5), e15739. https://doi.org/10.1016/J.HELIYON.2023.E15739

    Article  CAS  Google Scholar 

  • Ajuzieogu, C. A., Dyboh, I. C., & Nwobodo, D. C. (2022). Culture-dependent examination of the bacteriological quality of ready-to-eat African salads in Enugu metropolis, Nigeria and antibiotic resistance profile of associated bacteria. Heliyon, 8(10), e10782. https://doi.org/10.1016/j.heliyon.2022.e10782

    Article  CAS  Google Scholar 

  • Allam, H., Al-Batanony, M., Seif, A., & Awad, E. (2016). Hand contamination among food handlers. British Microbiology Research Journal, 13(5), 1–8. https://doi.org/10.9734/bmrj/2016/24845

    Article  Google Scholar 

  • Almualla, N. A., Laleye, L. C., Abushelaibi, A. A., Al-Qassemi, R. A., Wasesa, A. A., & Baboucarr, J. (2010). Aspects of the microbiological quality and safety of ready-to-eat foods in Sharjah supermarkets in the United Arab Emirates. Journal of Food Protection, 73(7), 1328–1331. https://doi.org/10.4315/0362-028X-73.7.1328

    Article  Google Scholar 

  • APHA-AWWA-WPCF. (2017). Standard methods for the examination of water and wastewater (23rd ed.). APHA.

    Google Scholar 

  • Bandopadhyay, S., Banerjee, K., Khanna, K. K., Sharma, R. S., & Verghese, T. (1992). Drinking water quality and diarrhoea in Delhi. Journal of Communicable Diseases, 24, 156–158.

    Google Scholar 

  • Bell, R. L., Kase, J. A., Harrison, L. M., Balan, K. V., Babu, U., Chen, Y., Macarisin, D., Kwon, H. J., Zheng, J., Stevens, E. L., Meng, J., & Brown, E. W. (2021). The persistence of bacterial pathogens in surface water and its impact on global food safety. Pathogens, 10(11), 1391. https://doi.org/10.3390/pathogens10111391

    Article  Google Scholar 

  • Berhanu, L., Mereta, S. T., Gume, B., Kassa, T., Berihun, G., Dadi, L. S., Suleman, S., Tegegne, D., Getaneh, A., & Bedru, H. (2021). Effect of microbial quality of washing water on hand hygiene status of food handlers in jimma town: Implication for food hygiene and safety. Journal of Multidisciplinary Healthcare, 14, 1129–1134. https://doi.org/10.2147/JMDH.S306359

    Article  Google Scholar 

  • Bisht, A., Kamble, M. P., Choudhary, P., Chaturvedi, K., Kohli, G., Juneja, V. K., Sehgal, S., & Taneja, N. K. (2021). A surveillance of food borne disease outbreaks in India: 2009–2018. Food Control, 121, 107630. https://doi.org/10.1016/J.FOODCONT.2020.107630

    Article  Google Scholar 

  • Cabral, J. P. S. (2010). Water microbiology bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657–3703. https://doi.org/10.3390/ijerph7103657

    Article  Google Scholar 

  • Campos, J., Gil, J., Mourão, J., Peixe, L., & Antunes, P. (2015). Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: An exploratory study in Porto region, Portugal. International Journal of Food Microbiology, 206, 1–6. https://doi.org/10.1016/j.ijfoodmicro.2015.04.016

    Article  CAS  Google Scholar 

  • Campos, J., Mourão, J., Pestana, N., Peixe, L., Novais, C., & Antunes, P. (2013). Microbiological quality of ready-to-eat salads: An underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. International Journal of Food Microbiology, 166(3), 464–470. https://doi.org/10.1016/J.IJFOODMICRO.2013.08.005

    Article  Google Scholar 

  • Castro-Rosas, J., Cerna-Cortés, J. F., Méndez-Reyes, E., Lopez-Hernandez, D., Gómez-Aldapa, C. A., & Estrada-Garcia, T. (2012). Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. International Journal of Food Microbiology, 156(2), 176–180. https://doi.org/10.1016/j.ijfoodmicro.2012.03.025

    Article  Google Scholar 

  • Chandra, S., Saxena, T., Nehra, S., & Krishna Mohan, M. (2016). Quality assessment of supplied drinking water in Jaipur city, India, using PCR-based approach. Environmental Earth Sciences, 75, 2. https://doi.org/10.1007/s12665-015-4809-5

    Article  CAS  Google Scholar 

  • Chen, L., & Alali, W. (2018). Editorial: Recent discoveries in human serious foodborne pathogenic bacteria: Resurgence, pathogenesis, and control strategies. Frontiers in Microbiology, 9, 2421. https://doi.org/10.3389/fmicb.2018.02412

    Article  Google Scholar 

  • Chow, C. M., Leung, A. K., & Hon, K. L. (2010). Acute gastroenteritis: From guidelines to real life. Clinical and Experimental Gastroenterology, 3, 97–112. https://doi.org/10.2147/ceg.s6554

    Article  Google Scholar 

  • Dela, H., Egyir, B., Behene, E., Sulemana, H., Tagoe, R., Bentil, R., Bongo, R. N. A., Bonfoh, B., Zinsstag, J., Bimi, L., & Addo, K. K. (2023). Microbiological quality and antimicrobial resistance of bacteria species recovered from ready-to-eat food, water samples, and palm swabs of food vendors in Accra. Ghana. International Journal of Food Microbiology, 396, 110195. https://doi.org/10.1016/j.ijfoodmicro.2023.110195

    Article  CAS  Google Scholar 

  • Denis, N., Zhang, H., Leroux, A., Trudel, R., & Bietlot, H. (2016). Prevalence and trends of bacterial contamination in fresh fruits and vegetables sold at retail in Canada. Food Control, 67, 225–234. https://doi.org/10.1016/J.FOODCONT.2016.02.047

    Article  Google Scholar 

  • Desai, R., Pannaraj, P. S., Agopian, J., Sugar, C. A., Liu, G. Y., & Miller, L. G. (2011). Survival and transmission of community-associated methicillin-resistant Staphylococcus aureus from fomites. American Journal of Infection Control, 39(3), 219–225. https://doi.org/10.1016/J.AJIC.2010.07.005

    Article  Google Scholar 

  • Dos Santos, S., Adams, E. A., Neville, G., Wada, Y., de Sherbinin, A., Mullin Bernhardt, E., & Adamo, S. B. (2017). Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Science of the Total Environment, 607–608, 497–508. https://doi.org/10.1016/j.scitotenv.2017.06.157

    Article  CAS  Google Scholar 

  • Edokpayi, J., Rogawski, E., Kahler, D., Hill, C., Reynolds, C., Nyathi, E., Smith, J., Odiyo, J., Samie, A., Bessong, P., & Dillingham, R. (2018). Challenges to sustainable safe drinking water: A case study of water quality and wse across seasons in rural communities in Limpopo Province. South Africa. Water, 10(2), 159. https://doi.org/10.3390/w10020159

    Article  CAS  Google Scholar 

  • Eshcol, J., Mahapatra, P., Keshapagu, S., Eshcol Roy, J. J., Carver, L. A., Keshapagu, M. S., & P. (2009). Is fecal contamination of drinking water after collection associated with household water handling and hygiene practices? A study of urban slum households in Hyderabad. India. Journal of Water and Health, 7(1), 145–154. https://doi.org/10.2166/WH.2009.094

    Article  Google Scholar 

  • Faour-Klingbeil, D., Todd, E. C. D., & Kuri, V. (2016). Microbiological quality of ready-to-eat fresh vegetables and their link to food safety environment and handling practices in restaurants. LWT, 74, 224–233. https://doi.org/10.1016/j.lwt.2016.07.051

    Article  CAS  Google Scholar 

  • Ghosh, M., Wahi, S., Kumar, M., & Ganguli, A. (2007). Prevalence of enterotoxigenic staphylococcus aureus and shigella spp. in some raw street vended Indian foods. International Journal of Environmental Health Research, 17(2), 151–156. https://doi.org/10.1080/09603120701219204

    Article  Google Scholar 

  • Goel, N. K., Pathak, R., Gulati, S., Balakrishnan, S., Singh, N., & Singh, H. (2015). Surveillance of bacteriological quality of drinking water in Chandigarh, northern India. Journal of Water and Health, 13(3), 931–938. https://doi.org/10.2166/WH.2015.132

    Article  Google Scholar 

  • Graham, J. P., & Polizzotto, M. L. (2013). Pit latrines and their impacts on groundwater quality: A systematic review. Environmental Health Perspectives, 121(5), 521–530. https://doi.org/10.1289/ehp.1206028

    Article  Google Scholar 

  • Gu, G., Hu, J., Cevallos-Cevallos, J. M., Richardson, S. M., Bartz, J. A., & van Bruggen, A. H. C. (2011). Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS ONE, 6(11), e27340. https://doi.org/10.1371/journal.pone.0027340

    Article  CAS  Google Scholar 

  • Heredia, N., & García, S. (2018). Animals as sources of food-borne pathogens: A review. Animal Nutrition, 4(3), 250–255. https://doi.org/10.1016/J.ANINU.2018.04.006

    Article  Google Scholar 

  • Holvoet, K., Sampers, I., Seynnaeve, M., & Uyttendaele, M. (2014). Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. International Journal of Food Microbiology, 171, 21–31. https://doi.org/10.1016/J.IJFOODMICRO.2013.11.009

    Article  CAS  Google Scholar 

  • International Organization for Standardization. (2010). Meat and meat products Enumeration of presumptive Pseudomonas spp. (ISO 13720:2010).

  • International Organization for Standardization. (2017a). Microbiology of the food chain Horizontal method for the detection and enumeration of Enterobacteriaceae- Part 2: Colony-count technique (ISO 21528–2:2017).

  • International Organization for Standardization. (2017b). Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. (ISO 6579–1:2017).

  • International Organization for Standardization. (2018). Microbiology of the food chain - Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli - Part 1: Colony-count technique at 44 degrees C using membranes and 5-bromo-4-chloro-3-indolyl beta-D-glucuronide (ISO 16649–1:2018).

  • International Organization for Standardization. (2021). Microbiology of the food chain-Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species)-Part 1: Method using Baird-Parker agar medium (ISO 6888–1:2021).

  • Jahan, M., Rahman, M., Rahman, M., Sikder, T., Uson-Lopez, R. A., Selim, A. SMd., Saito, T., & Kurasaki, M. (2018). Microbiological safety of street-vended foods in Bangladesh. Journal of Consumer Protection and Food Safety, 13(3), 257–269. https://doi.org/10.1007/s00003-018-1174-9

    Article  Google Scholar 

  • Kharel, N., Palni, U., & Tamang, J. P. (2016). Microbiological assessment of ethnic street foods of the Himalayas. Journal of Ethnic Foods, 3(3), 235–241. https://doi.org/10.1016/J.JEF.2016.01.001

    Article  Google Scholar 

  • Kumar, M., Agarwal, D., Ghosh, M., & Ganguli, A. (2006). Microbiological safety of street vended fruit chats in Patiala city. Indian Journal of Medical Microbiology, 24(1), 75–76. https://doi.org/10.4103/0255-0857.19905

    Article  CAS  Google Scholar 

  • Kumar, S., Tripathi, V. R., & Garg, S. K. (2011). Physicochemical and microbiological assessment of recreational and drinking waters. Environmental Monitoring and Assessment, 184(5), 2691–2698. https://doi.org/10.1007/s10661-011-2144-1

    Article  CAS  Google Scholar 

  • Kumpel, E., & Nelson, K. L. (2013). Comparing microbial water quality in an intermittent and continuous piped water supply. Water Research, 47(14), 5176–5188. https://doi.org/10.1016/j.watres.2013.05.058

    Article  CAS  Google Scholar 

  • Kundu, A., Smith, W. A., Harvey, D., & Wuertz, S. (2018). Drinking water safety: Role of hand hygiene, sanitation facility, and water system in semi-urban areas of India. The American Journal of Tropical Medicine and Hygiene, 99(4), 889–898. https://doi.org/10.4269/AJTMH.16-0819

    Article  Google Scholar 

  • Lee, K., & Yoon, S. S. (2017). Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. Journal of Microbiology and Biotechnology, 27(6), 1053–1064. https://doi.org/10.4014/jmb.1611.11056

    Article  CAS  Google Scholar 

  • Li, X., Gu, N., Huang, T., Zhong, F., & Peng, G. (2023). Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Frontiers in Microbiology, 13.https://doi.org/10.3389/fmicb.2022.1114199

  • Luthra, D., Sahota, P., & Sood, B. (2017). Bacteriological Food Testing kit (BFTK) for rapid and efficient detection of presence/ absence of recurrent indicator and emerging pathogens in food sample (Indian Patent Application No. 201711032209).

  • Mackie, T. J., Mccartney, J. E., & Collee, J. G. (1996). Mackie & McCartney Practical medical microbiology. Churchill Livingstone.

    Google Scholar 

  • Mahapatra, A., Padhi, N., Mahapatra, D., Bhatt, M., Sahoo, D., Jena, S., Dash, D., & Chayani, N. (2015). Study of biofilm in bacteria from water pipelines. Journal of Clinical and Diagnostic Research: JCDR, 9(3), 09–11. https://doi.org/10.7860/JCDR/2015/12415.5715

    Article  Google Scholar 

  • Makinde, O. M., Ayeni, K. I., Sulyok, M., Krska, R., Adeleke, R. A., & Ezekiel, C. N. (2020). Microbiological safety of ready-to-eat foods in low- and middle-income countries: A comprehensive 10-year (2009 to 2018) review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 703–732. https://doi.org/10.1111/1541-4337.12533

    Article  Google Scholar 

  • Malhotra, S., Sidhu, S. K., & Devi, P. (2015). Assessment of bacteriological quality of drinking water from various sources in Amritsar district of northern India. The Journal of Infection in Developing Countries, 9(08), 844–848. https://doi.org/10.3855/jidc.6010

    Article  CAS  Google Scholar 

  • Mengistu, D. A., Belami, D. D., Tefera, A. A., & Alemeshet Asefa, Y. (2022). Bacteriological quality and public health risk of ready-to-eat foods in developing countries: Systematic review and meta analysis. Microbiology Insights, 15, 117863612211139. https://doi.org/10.1177/11786361221113916

    Article  Google Scholar 

  • Miko, B. A., Hafer, C. A., Lee, C. J., Sullivan, S. B., Hackel, M. A. M., Johnson, B. M., Whittier, S., Della-Latta, P., Uhlemann, A. C., & Lowy, F. D. (2013). Molecular characterization of methicillin-susceptible Staphylococcus aureus clinical isolates in the United States, 2004 to 2010. Journal of Clinical Microbiology, 51(3), 874–879. https://doi.org/10.1128/jcm.00923-12

    Article  Google Scholar 

  • Mondal, D., Ganguli, B., Roy, S., Halder, B., Banerjee, N., Banerjee, M., Samanta, M., Giri, A., & Polya, D. (2014). Diarrhoeal health risks attributable to water-borne pathogens in Arsenic mitigated drinking water in West Bengal are largely independent of the microbiological quality of the supplied water. Water, 6(5), 1100–1117. https://doi.org/10.3390/w6051100

    Article  CAS  Google Scholar 

  • Nethathe, B., Matsheketsheke, P. A., Mashau, M. E., & Ramashia, S. E. (2023). Microbial safety of ready-to-eat food sold by retailers in Thohoyandou Limpopo province South Africa. Cogent Food & Agriculture, 9, 1. https://doi.org/10.1080/23311932.2023.2185965

    Article  Google Scholar 

  • Odeyemi, O. A. (2016). Public health implications of microbial food safety and foodborne diseases in developing countries. Food & Nutrition Research, 60(1), 29819. https://doi.org/10.3402/fnr.v60.29819

    Article  Google Scholar 

  • Osakue, O. P., Igene, J. O., Ebabhamiegbebho, P. A., & Evivie, S. E. (2016). Proximate analysis and microbial quality of ready-to-eat fried Chicken part. Journal of Food and Industrial Microbiology, 2(1), 1–8.

    Google Scholar 

  • Pachepsky, Y., Shelton, D., Patel, J., & Mandrell, R. (2011). Irrigation waters as a source of pathogenic microorganisms in produce. A review. Advances in Agronomy - ADVAN AGRON, 113, 73–138. https://doi.org/10.1016/B978-0-12-386473-4.00007-5

    Article  Google Scholar 

  • Paudyal, N., Anihouvi, V., Hounhouigan, J., Matsheka, M. I., Sekwati-Monang, B., Amoa-Awua, W., Atter, A., Ackah, N. B., Mbugua, S., Asagbra, A., Abdelgadir, W., Nakavuma, J., Jakobsen, M., & Fang, W. (2017). Prevalence of foodborne pathogens in food from selected African countries – A meta-analysis. International Journal of Food Microbiology, 249, 35–43. https://doi.org/10.1016/J.IJFOODMICRO.2017.03.002

    Article  Google Scholar 

  • Rane, S. (2011). Street vended food in developing world: Hazard analyses. Indian Journal of Microbiology, 51(1), 100–106. https://doi.org/10.1007/s12088-011-0154-x

    Article  Google Scholar 

  • Raza, J., Asmat, T. M., Mustafa, M. Z., Ishtiaq, H., Mumtaz, K., Jalees, M. M., Samad, A., Shah, A. A., Khalid, S., & Rehman, H. (2021). Contamination of ready-to-eat street food in Pakistan with Salmonella spp.: Implications for consumers and food safety. International Journal of Infectious Diseases, 106, 123–127. https://doi.org/10.1016/J.IJID.2021.03.062

    Article  Google Scholar 

  • Riemann, H., & Cliver, D. O. (2006). Foodborne infections and intoxications. Academic Press.

    Google Scholar 

  • Sahota, P. P. & Pandove, G. (2022). Method for water testing and water testing kit (Indian Patent No. 399015).

  • Sahota, P., Pandove, G., Achal, V., & Vikal, Y. (2010). Evaluation of a BWTK for detection of total coliforms E coli and emerging pathogens from drinking water: Comparison with standard MPN method. Water Science and Technology, 62(3), 676–683. https://doi.org/10.2166/wst.2010.330

    Article  CAS  Google Scholar 

  • Senior, B. W. (1996). Examination of water, milk, food and air. In J. G. Collee, B. P. Marmion, A. G. Fraser, & A. Simmons (Eds.), Mackie and McCartney practical medical microbiology (4th ed., pp. 883–921). Churchill Livingstone.

    Google Scholar 

  • Sharma, M. D., Gupta, P., Chauhan, S., Panwar, R., Singh, S., Kumar, P., & Kulshrestha, S. (2023). Seasonal impact on microbiological quality of drinking water in Solan City of Himachal Pradesh. India. Environmental Monitoring and Assessment, 195(8), 930. https://doi.org/10.1007/s10661-023-11510-4

    Article  CAS  Google Scholar 

  • Sneath, P. H. A., Mair, N. S., Sharpe, M. E., & Holt, J. G. (1986). Bergey’s manual of systematic bacteriology (Vol. 2, pp. 965–1595). Williams and Wilkins.

  • Söderqvist, K. (2017). Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads. Infection Ecology & Epidemiology, 7(1), 1407216. https://doi.org/10.1080/20008686.2017.1407216

    Article  Google Scholar 

  • Some, S., Mondal, R., Mitra, D., Jain, D., Verma, D., & Das, S. (2021). Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus, 1, 100008. https://doi.org/10.1016/j.nexus.2021.100008

    Article  CAS  Google Scholar 

  • Sospedra, I., Rubert, J., Soriano, J. M., & Mañes, J. (2013). Survey of microbial quality of plant-based foods served in restaurants. Food Control, 30(2), 418–422. https://doi.org/10.1016/J.FOODCONT.2012.08.004

    Article  Google Scholar 

  • Stein, R. A., & Chirila, M. (2017). Routes of transmission in the food chain. Foodborne Diseases, 65–103 https://doi.org/10.1016/B978-0-12-385007-2.00003-6

  • Sudad, J. M. (2018). Quality and quantity microbial assessment of the mobile restaurants (caravans) in Baghdad. Journal of Pharmaceutical Sciences and Research, 10(9), 2354–2355.

    Google Scholar 

  • Suthar, S., Chhimpa, V., & Singh, S. (2009). Bacterial contamination in drinking water: A case study in rural areas of northern Rajasthan. India. Environmental Monitoring and Assessment, 159(1–4), 43–50. https://doi.org/10.1007/S10661-008-0611-0/METRICS

    Article  Google Scholar 

  • Syne, S.-M., Ramsubhag, A., & Adesiyun, A. A. (2013). Microbiological hazard analysis of ready-to-eat meats processed at a food plant in Trinidad. West Indies. Infection Ecology & Epidemiology, 3(1), 20450. https://doi.org/10.3402/IEE.V3I0.20450

    Article  Google Scholar 

  • Viswanathan, P., & Kaur, R. (2001). Prevalence and growth of pathogens on salad vegetables, fruits and sprouts. International Journal of Hygiene and Environmental Health, 203(3), 205–213. https://doi.org/10.1078/S1438-4639(04)70030-9

    Article  CAS  Google Scholar 

  • World Health Organization. (2015). WHO estimates of the global burden of food-borne diseases. Food-borne diseases burden epidemiology reference group (pp. 2007–2015). WHO.

    Google Scholar 

  • World Health Organization. (2008). Microbiological hazards in fresh fruits and vegetables. Microbiological Risk assessment series.

    Google Scholar 

  • World Health Organization. (2011). Guidelines for drinking water (4th ed.). WHO.

    Google Scholar 

  • Xylia, P., Botsaris, G., Chrysargyris, A., Skandamis, P., & Tzortzakis, N. (2019). Variation of microbial load and biochemical activity of ready-to-eat salads in Cyprus as affected by vegetable type, season, and producer. Food Microbiology, 83, 200–210. https://doi.org/10.1016/j.fm.2019.05.013

    Article  CAS  Google Scholar 

  • Yadav, N., Singh, S., & Goyal, S. K. (2019). Effect of seasonal variation on bacterial inhabitants and diversity in drinking water of an office building, Delhi. Air, Soil and Water Research, 12, 1178622119882335. https://doi.org/10.1177/1178622119882335

    Article  Google Scholar 

  • Ye, B., Yang, L., Li, Y., Wang, W., & Li, H. (2013). Water sources and their protection from the impact of microbial contamination in rural areas of Beijing, China. International Journal of Environmental Research and Public Health, 10(3), 879–891. https://doi.org/10.3390/ijerph10030879

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge DST-FIST Laboratory, COBS&H, PAU Ludhiana.

Author information

Authors and Affiliations

Authors

Contributions

Swati Pandey performed writing—original draft, investigation, data curation, formal analysis, and visualization. Keshani Bhushan provided resources, methodology and funding acquisition, supervision, investigation, conceptualization, and writing—review and editing. Gurvinder Singh Kocher provided resources, supervision, investigation, and conceptualization. Param Pal Sahota provided resources, methodology, supervision, and investigation.

Corresponding author

Correspondence to Keshani Bhushan.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Bhushan, K., Kocher, G.S. et al. Microbiological assessment of ready-to-eat foods and drinking water sources as a potential vehicle of bacterial pathogens in northern India. Environ Monit Assess 196, 547 (2024). https://doi.org/10.1007/s10661-024-12704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12704-0

Keywords

Navigation