Skip to main content
Log in

Determination of threshold values and heavy metal pollution assessment of soils in an industrial area in Ghana

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrial activities have the potential to pollute soils with a wide variety of heavy metals (HMs). In Ghana, however, assessment of HM pollution of soils in industrial areas remains limited. Accordingly, HM soil pollution in one of the industrial areas in Accra, Ghana was assessed. Soil samples were taken and analysed for HMs, including Fe, Zr, Zn, Ti, Sr, Rb, Mn, Pb, Cu, and Co, using X-Ray Fluorescence (XRF). HM geochemical threshold values (GTVs) were determined to establish soil HM pollution levels and identify areas needing remediation. Furthermore, risk assessments were conducted to evaluate the potential ecological and human health risks associated with these metals. The mean concentrations of Fe, Zn, Rb, Sr, Zr, Ti, Mn, Co, Cu, and Pb in the soils were: 27133.83, 147.72, 16.30, 95.95, 307.11, 4663.66, 289.85, 418.54, 44.97, and 112.88 mg/kg, respectively. Generally, the concentrations of HMs decreased with depth, although some lower layers exhibited elevated HM levels. Soil pollution levels were categorized as low for Fe, Rb, Zr, Ti, Mn, Co, and Cu; moderate for Sr and Zn; and considerable for Pb. Notably, the northwestern part of the study area displayed a considerable to very high degree of HM contamination. While HMs in the soils posed low ecological risk, the human health risk assessment indicated potential health effects from Co, particularly in children. The presence of HMs in the soils was noted to originate from both natural geological phenomena and human activities, including industrial operations, agricultural practices, landfill activities, and vehicular emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Acheampong, F., Akenten, J. W., Imoro, R., Agbesie, H. R., & Abaye, D. (2016). Evaluation of heavy metal pollution in the Suame Industrial Area, Kumasi. Ghana. Journal of Health and Pollution, 6(10), 56–63.

    Article  Google Scholar 

  • Agbeshie, A. A., Adjei, R., Anokye, J., & Banunle, A. (2020). Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific African, 8, e00390. https://doi.org/10.1016/j.sciaf.2020.e00390

    Article  Google Scholar 

  • Agyeman, P. C., Ahado, S. K., Kingsley, J., Kebonye, N. M., Biney, J. K. M., Borůvka, L., et al. (2021). Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environmental Geochemistry and Health, 43, 601–620. https://doi.org/10.1007/s10653-020-00743-8

    Article  CAS  Google Scholar 

  • Ahmed, F., Ali, I., Kousar, S., & Ahmed, S. (2022). The environmental impact of industrialization and foreign direct investment: empirical evidence from Asia-Pacific region. Environmental Science and Pollution Research, 29, 29778–29792. https://doi.org/10.1007/s11356-021-17560-w

    Article  Google Scholar 

  • Akoto, O., Nimako, C., Asante, J., Bailey, D., & Bortey-Sam, N. (2018). Spatial distribution, exposure, and health risk assessment of bioavailable forms of heavy metals in surface soils from abandoned landfill sites in Kumasi, Ghana. Human and Ecological Risk Assessment: An International Journal, 26, 1134–1148. https://doi.org/10.1080/10807039.2018.1476125

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/6730305

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment, 454, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005

    Article  CAS  Google Scholar 

  • Baillie, I. C. (2001). Soil survey staff 1999, soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, agricultural handbook 436, Natural Resources Conservation Service (p. 869). https://doi.org/10.1111/j.1475-2743.2001.tb00008.x

    Book  Google Scholar 

  • Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province. Turkey. Chemosphere, 241, 125015. https://doi.org/10.1016/j.chemosphere.2019.125015

    Article  CAS  Google Scholar 

  • Brammer, H. (1967). Soils of the Accra plains. Memoir No. 3, Soil Research Institute, Kumasi (Vol. 3, pp. 1–146). Pub. Academy of Science.

    Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., ... & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195. https://doi.org/10.1016/j.gexplo.2014.09.010

  • Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/10.1016/j.chemosphere.2015.04.008

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28(4), 1173–1181. https://doi.org/10.2134/jeq1999.00472425002800040018x

    Article  CAS  Google Scholar 

  • Cristiano, W., Giacoma, C., Carere, M., & Mancini, L. (2021). Chemical pollution as a driver of biodiversity loss and potential deterioration of ecosystem services in Eastern Africa: A critical review. South African Journal of Science, 117(9–10), 1–7. https://doi.org/10.17159/sajs.2021/9541

    Article  Google Scholar 

  • Curtis, E. M., Cooper, C., & Harvey, N. C. (2021). Cardiovascular safety of calcium, magnesium and strontium: what does the evidence say? Aging Clinical and Experimental Research, 33, 479–494. https://doi.org/10.1007/s40520-021-01799-x

    Article  Google Scholar 

  • Czarnek, K., Terpiłowska, S., & Siwicki, A. K. (2015). Selected aspects of the action of cobalt ions in the human body. Central European Journal of Immunology, 40(2), 236–242. https://doi.org/10.5114/ceji.2015.52837

    Article  Google Scholar 

  • Dapaah-Siakwan, S., Agyekum, W. A., & Amankwah-Mainoo, P. (2011). Landfill site investigation in the Tema metropolis using 2-dimensional resistivity technique. Ghana Journal of Science, 51, 25–31.

    Google Scholar 

  • Ding, C., Chen, J., Zhu, F., Chai, L., Lin, Z., Zhang, K., & Shi, Y. (2022). Biological toxicity of heavy metal (loid) s in natural environments: From microbes to humans. Frontiers in Environmental Science, 10, 920957. https://doi.org/10.3389/fenvs.2022.920957

    Article  Google Scholar 

  • Egbi, C. D., Anornu, G. K., Appiah-Adjei, E. K., Ganyaglo, S. Y., & Dampare, S. B. (2021). Trace metals migration and contamination assessment of groundwater in the Lower Volta River Basin, Ghana. Exposure and Health, 13, 487–504. https://doi.org/10.1007/s12403-021-00398-5

    Article  CAS  Google Scholar 

  • Eze, P. N. (2015). Spatial variability and classification of soils on a Legon hill catena in the Accra Plains, Ghana. Journal of Soil Science and Environmental Management, 6(8), 204–214. https://doi.org/10.5897/JSSEM15.0495

    Article  Google Scholar 

  • Feng, W., Zhang, Y., Huang, L., Li, Y., Wang, S., Zheng, Y., ... & Xu, K. (2022). Source apportionment of environmentally persistent free radicals (EPFRs) and heavy metals in size fractions of urban arterial road dust. Process Safety and Environmental Protection, 157, 352–361. https://doi.org/10.1016/j.psep.2021.11.039

  • Fenny, A. P. (2017). Ghana’s path to an industrial–led growth: the role of decentralisation policies. International Journal of Economics and Finance, 9(11), 22–34. https://doi.org/10.5539/ijef.v9n11p22

    Article  Google Scholar 

  • Fieve, R. R., Meltzer, H., Dunner, D. L., Levitt, M., Mendlewicz, J., & Thomas, A. (1973). Rubidium: biochemical, behavioral, and metabolic studies in humans. American Journal of Psychiatry, 130(1), 55–61. https://doi.org/10.1176/ajp.130.1.55

    Article  CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160(3-4), 414–424. https://doi.org/10.1016/j.geoderma.2010.10.012

    Article  CAS  Google Scholar 

  • Gbogbo, F., & Adomako, K. A. (2011). Comparative efficacy of four rodenticides on the Ghanaian market. Journal of Ghana Science Association, 13(1), 135. https://doi.org/10.4314/jgsa.v13i1.69186

    Article  Google Scholar 

  • Guerra, D. L., Batista, A. C., Viana, R. R., & Airoldi, C. (2011). Adsorption of rubidium on raw and MTZ-and MBI-imogolite hybrid surfaces: An evidence of the chelate effect. Desalination, 275(1-3), 107–117. https://doi.org/10.1016/j.desal.2011.02.029

    Article  CAS  Google Scholar 

  • Hadzi, G. Y., Ayoko, G. A., Essumang, D. K., & Osae, S. K. (2019). Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41, 2821–2843. https://doi.org/10.1007/s10653-019-00332-4

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • result in various adverse health, O., Harper, D.A., & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9. 4, 1–9. https://doc.rero.ch/record/15326/files/PAL_E2660.pdf. Accessed 15 Apr 2023.

  • Hegazy, A. A., Zaher, M. M., Abd El-Hafez, M. A., Morsy, A. A., & Saleh, R. A. (2010). Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Research Notes, 3, 1–9. https://doi.org/10.1186/1756-0500-3-133

    Article  CAS  Google Scholar 

  • Huang, H., Lin, C., Yu, R., Yan, Y., Hu, G., & Li, H. (2019). Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China. RSC Advances, 9(26), 14736–14744. https://doi.org/10.1039/C9RA02333J

    Article  CAS  Google Scholar 

  • Imanishi, Y., Bando, A., Komatani, S., Wada, S., & Tsuji, K. (2010). Experimental parameters for XRF analysis of soils. Powder Diffraction, 53, 248–255.

    CAS  Google Scholar 

  • ISO. (2005). Soil quality—Sampling—Part 5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination. International Standard, 10381–5, 2005.

    Google Scholar 

  • Jiang, F., Ren, B., Hursthouse, A., Deng, R., & Wang, Z. (2019). Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environmental Science and Pollution Research, 26(16), 16556–16567. https://doi.org/10.1007/s11356-019-04997-3

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., p. 356). CRC Press.

    Google Scholar 

  • Kabata-pendias, A. (2010). Trace elements in soils and plants (4th ed.) CRC Press. https://doi.org/10.1201/b10158

  • Karikari, A. Y., Asmah, R., Anku, W. W., Amisah, S., Agbo, N. W., Telfer, T. C., & Ross, L. G. (2020). Heavy metal concentrations and sediment quality of a cage farm on Lake Volta. Ghana. Aquaculture Research, 51(5), 2041–2051. https://doi.org/10.1111/are.14555

    Article  CAS  Google Scholar 

  • Karim, Z., Qureshi, B. A., & Mumtaz, M. (2015). Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol Indic, 48, 358–364. https://doi.org/10.1016/j.ecolind.2014.08.032

    Article  CAS  Google Scholar 

  • Kesse, G. O. (1985). The mineral and rock resources of Ghana (p. 610). Balkema Publishers, Rotterdam.

    Google Scholar 

  • Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International Journal of Implant Dentistry, 5, 1–12. https://doi.org/10.1186/s40729-019-0162-x

    Article  CAS  Google Scholar 

  • Kodom, K., Preko, K., & Boamah, D. (2012). X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. Soil and Sediment Contamination: An International Journal, 21(8), 1006–1021. https://doi.org/10.1080/15320383.2012.712073

    Article  CAS  Google Scholar 

  • Konadu, F. N., Gyamfi, O., Ansah, E., Borquaye, L. S., Agyei, V., Dartey, E., et al. (2023). Human health risk assessment of potentially toxic elements in soil and air particulate matter of automobile hub environments in Kumasi, Ghana. Toxicology Reports, 11, 261–269. https://doi.org/10.1016/j.toxrep.2023.09.010

    Article  CAS  Google Scholar 

  • Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502. https://doi.org/10.1016/j.jhazmat.2019.121502

    Article  CAS  Google Scholar 

  • Lamas, G. A., Navas-Acien, A., Mark, D. B., & Lee, K. L. (2016). Heavy metals, cardiovascular disease, and the unexpected benefits of chelation therapy. Journal of the American College of Cardiology, 67(20), 2411–2418. https://doi.org/10.1016/j.jacc.2016.02.066

    Article  Google Scholar 

  • Li, F., Fan, Z., Xiao, P., Oh, K., Ma, X., & Hou, W. (2009). Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environmental Geology, 57, 1815–1823. https://doi.org/10.1007/s00254-008-1469-8

    Article  CAS  Google Scholar 

  • Li, L., & Yang, X. (2018). The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/7580707

  • Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., ... & Fang, Y. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057

  • Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E., & Zhang, J. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878. https://doi.org/10.1016/j.jhazmat.2021.126878

    Article  CAS  Google Scholar 

  • Lv, J., Liu, Y., Zhang, Z., Zhou, R., & Zhu, Y. (2015). Distinguishing anthropogenic and natural sources of trace elements in soils undergoing recent 10-year rapid urbanization: a case of Donggang, Eastern China. Environmental Science and Pollution Research, 22, 10539–10550. https://doi.org/10.1007/s11356-015-4213-4

    Article  CAS  Google Scholar 

  • Machender, G., Dhakate, R., Rao, S. M., Rao, B. M., & Prasanna, L. (2014). Heavy metal contamination in sediments of Balanagar industrial area, Hyderabad, Andra Pradesh, India. Arabian Journal of Geosciences, 7, 513–525.

    Article  CAS  Google Scholar 

  • Mamut, A., Eziz, M., Mohammad, A., & Anayit, M. (2017). The spatial distribution, contamination, and ecological risk assessment of heavy metals of farmland soils in Karashahar-Baghrash oasis, northwest China. Human and Ecological Risk Assessment, 23(6), 1300–1314. https://doi.org/10.1080/10807039.2017.1305263

    Article  CAS  Google Scholar 

  • Mehta, U. H., Kaul, D. S., Westerdahl, D., Ning, Z., Zhang, K., Sun, L., ... & Joshi, R. R. (2022). Understanding the sources of heavy metal pollution in ambient air of neighboring a solid waste landfill site. Aerosol Science and Engineering, 6(2), 161–175. https://doi.org/10.1016/j.atmosenv.2016.06.066

  • Muller, G. M. M. G. M. G. M. G. P. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Münzel, T., Hahad, O., Daiber, A., & Landrigan, P. J. (2023). Soil and water pollution and human health: what should cardiologists worry about? Cardiovascular Research, 119(2), 440–449. https://doi.org/10.1093/cvr/cvac082

    Article  CAS  Google Scholar 

  • Naimi, S., & Ayoubi, S. (2013). Vertical and horizontal distribution of magnetic susceptibility and metal contents in an industrial district of central Iran. Journal of Applied Geophysics, 96, 55–66. https://doi.org/10.1016/j.jappgeo.2013.06.012

    Article  Google Scholar 

  • Nogueira, T. A. R., Abreu-Junior, C. H., Alleoni, L. R. F., He, Z., Soares, M. R., dos Santos Vieira, C., ... & Capra, G. F. (2018). Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. Environmental Management, 221, 10–19. https://doi.org/10.1016/j.jenvman.2018.05.048

  • Nuamah, D. O. B., Tandoh Kingsley, K., & Brako, A. B. (2019). Geochemistry of minor and trace elements in soils of Akuse area, Southeastern Ghana. Geosciences, 9, 8–17. https://doi.org/10.5923/j.geo.20190901.02

    Article  Google Scholar 

  • Obiri-Nyarko, F., Duah, A. A., Karikari, A. Y., & Tagoe, R. (2023). Characterization of leachate, groundwater quality analysis, and evaluation of hydrogeochemical processes at the Kpone engineered landfill site, Ghana. Sustainable Water Resources Management, 9(1), 15.

    Article  Google Scholar 

  • Obiri-Nyarko, F., Duah, A. A., Karikari, A. Y., Agyekum, W. A., Manu, E., & Tagoe, R. (2021). Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment. Chemosphere, 282, https://doi.org/10.1016/j.chemosphere.2021.131007

  • Rashid, A. S. R., Wan Yaacob, W. Z., & Umor, M. R. (2023). Assessments of heavy metals accumulation, bioavailability, mobility, and toxicity in serpentine soils. Sustainability, 15(2), 1218.

    Article  Google Scholar 

  • Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the Total Environment, 350(1–3), 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047

    Article  CAS  Google Scholar 

  • Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., ... & Sadeghi, M. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River. Germany. Environ. Int., 126, 76–88. https://doi.org/10.1016/j.envint.2019.02.011

    Article  CAS  Google Scholar 

  • Sabin, L. D., Lim, J. H., Stolzenbach, K. D., & Schiff, K. C. (2006). Atmospheric dry deposition of trace metals in the coastal region of Los Angeles, California, USA. Environmental Toxicology and Chemistry., 25(9), 2334–2341. https://doi.org/10.1897/05-300R.1

    Article  CAS  Google Scholar 

  • Santos-Francés, F., Martínez-Graña, A., Alonso Rojo, P., & García Sánchez, A. (2017). Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes mountain range (Cajamarca-Huancavelica, Peru). International Journal of Environmental Research and Public Health, 14(8), 859. https://doi.org/10.3390/ijerph14080859

    Article  CAS  Google Scholar 

  • Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2012). Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Reviews of Environmental Contamination and Toxicology, 221, 107–127.

    Google Scholar 

  • Singh, S. K., Subramanian, V., & Gibbs, R. J. (1984). Hydrous Fe and Mn oxides—scavengers of heavy metals in the aquatic environment. Critical Reviews in Environmental Control, 14, 33–90. https://doi.org/10.1080/10643388409381713

    Article  Google Scholar 

  • Sojka, M., Choiński, A., Ptak, M., & Siepak, M. (2021). Causes of variations of trace and rare earth elements concentration in lakes bottom sediments in the Bory Tucholskie National Park, Poland. Scientific Reports, 11(1), 244.

    Article  CAS  Google Scholar 

  • Tian, S., Liang, T., Li, K., & Wang, L. (2018). Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust. Science of the Total Environment, 633, 958–966. https://doi.org/10.1016/j.scitotenv.2018.03.227

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Article  CAS  Google Scholar 

  • United Nations. (2012). Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2012 Revision. Available at: https://www.un.org/en/development/desa/publications/world-population-prospects-the-2012-revision.html. Accessed 8 Apr 2023.

  • USEPA, R. (1991). Risk assessment guidance for superfund (RAGS). Human health evaluation manual (HHEM) supplementary guidance. Office of Emergency and Remedial Response https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf. Accessed 12 Jun 2023.

    Google Scholar 

  • USEPA (1993). United States Environmental Protection Agency Integrated Risk Information System. Available online: http://www.epa.gov/iris/rfd.htm (accessed on 4th May 2023)

  • USEPA. (2007). Method 6200: field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment.

    Google Scholar 

  • Usuda, K., Kono, R., Ueno, T., Ito, Y., Dote, T., Yokoyama, H., et al. (2014). Risk assessment visualization of rubidium compounds: Comparison of renal and hepatic toxicities, in vivo. Biological Trace Element Research, 159, 263–268. https://doi.org/10.1007/s12011-014-9937-3

    Article  CAS  Google Scholar 

  • Wahab, M. I. A., Abd Razak, W. M. A., Sahani, M., & Khan, M. F. (2020). Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur. Science of the Total Environment, 703, 135535. https://doi.org/10.1016/j.scitotenv.2019.135535

    Article  CAS  Google Scholar 

  • Yu, B., Ding, B. M., Fan, C. H., Liu, Q. D., Ding, L., Wang, B. S., et al. (2016). Health status of dust-exposed workers in a precision casting enterprise. Chinese Journal of Industrial Hygiene and Occupational Diseases, 34(7), 517–519.

    CAS  Google Scholar 

  • Zannoni, D., Valotto, G., Visin, F., & Rampazzo, G. (2016). Sources and distribution of tracer elements in road dust: the Venice mainland case of study. Journal of Geochemical Exploration, 166, 64–72. https://doi.org/10.1016/j.gexplo.2016.04.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers are grateful for the assistance provided by the CSIR-WRI and wish to acknowledge the valuable contributions of its technicians.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Franklin Obiri-Nyarko; Methodology: Franklin Obiri-Nyarko, Jude Ofei Quansah, Sandra Vincentia Asare, Samuel Kwadwo Debrah; Formal analysis: Anthony Yaw Karikari, Franklin Obiri-Nyarko, Jude Ofei Quansah, Samuel Kwadwo Debrah, Collins Okrah; Investigation: Jude Ofei Quansah, Sandra Vincentia Asare, Samuel Kwadwo Debrah, Obed Fiifi Fynn; Resources: Anthony Yaw Karikari, Franklin Obiri-Nyarko, Collins Okrah; Writing—original draft preparation: Franklin Obiri-Nyarko; Writing—review and editing: Franklin Obiri-Nyarko, Anthony Yaw Karikari, Obed Fiifi Fynn, Collins Okrah. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Franklin Obiri-Nyarko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obiri-Nyarko, F., Quansah, J.O., Asare, S.V. et al. Determination of threshold values and heavy metal pollution assessment of soils in an industrial area in Ghana. Environ Monit Assess 196, 546 (2024). https://doi.org/10.1007/s10661-024-12660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12660-9

Keywords

Navigation