Skip to main content
Log in

Predicting ambient PM2.5 concentrations via time series models in Anhui Province, China

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Due to rapid expansion in the global economy and industrialization, PM2.5 (particles smaller than 2.5 µm in aerodynamic diameter) pollution has become a key environmental issue. The public health and social development directly affected by high PM2.5 levels. In this paper, ambient PM2.5 concentrations along with meteorological data are forecasted using time series models, including random forest (RF), prophet forecasting model (PFM), and autoregressive integrated moving average (ARIMA) in Anhui province, China. The results indicate that the RF model outperformed the PFM and ARIMA in the prediction of PM2.5 concentrations, with cross-validation coefficients of determination R2, RMSE, and MAE values of 0.83, 10.39 µg/m3, and 6.83 µg/m3, respectively. PFM achieved the average results (R2 = 0.71, RMSE = 13.90 µg/m3, and MAE = 9.05 µg/m3), while the predicted results by ARIMA are comparatively poorer (R2 = 0.64, RMSE = 15.85 µg/m3, and MAE = 10.59 µg/m3) than RF and PFM. These findings reveal that the RF model is the most effective method for predicting PM2.5 and can be applied to other regions for new findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akdi, Y., Okkaoglu, Y., Golveren, E., & Yucel, M. E. (2020). Estimation and forecasting of PM10 air pollution in Ankara via time series and harmonic regressions. International Journal of Environmental Science and Technology, 17, 3677–3690. https://doi.org/10.1007/s13762-020-02705-0

    Article  Google Scholar 

  • Anggraeni, W., Vinarti, R. A., & Kurniawati, Y. D. (2015). Performance comparisons between arima and arimax method in moslem kids clothes demand forecasting: Case study. Procedia Computer Science, 72, 630–637.

    Article  Google Scholar 

  • Athanasopoulos, G., Hyndman, R. J., Song, H., & Wu, D. C. (2011). The tourism forecasting competition. International Journal of Forecasting, 27, 822–844.

    Article  Google Scholar 

  • Bhatti, U. A., Yan, Y., Zhou, M., Ali, S., Hussain, A., Qingsong, H., et al. (2021). Time series analysis and forecasting of air pollution particulate matter (PM2.5): An SARIMA and factor analysis approach. IEEE Access, 9, 41019–41031. https://doi.org/10.1109/access.2021.3060744

    Article  Google Scholar 

  • Bhatti, U. A., Marjan, S., Wahid, A., Syam, M. S., Huang, M., Tang, H., & Hasnain, A. (2023). The effects of socioeconomic factors on particulate matter concentration in China’s: New evidence from spatial econometric model. Journal of Cleaner Production, 417, 137969. https://doi.org/10.1016/j.jclepro.2023.137969

    Article  CAS  Google Scholar 

  • Bilal, M., Mhawish, A., Nichol, J. E., Qiu, Z., Nazeer, M., Ali, M. A., et al. (2021). Air pollution scenario over Pakistan: characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sensing of Environment, 264, 112617. https://doi.org/10.1016/j.rse.2021.112617

    Article  Google Scholar 

  • Box, G., & Jenkins, G. (1976). Time series analysis: Forecasting and control. Holden-Day.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Brokamp, C., Jandarov, R., Hossain, M., & Ryan, P. (2018). Predicting daily urban fine particulate matter concentrations using a random forest model. Environmental Science and Technology, 52, 4173–4179.

    Article  CAS  Google Scholar 

  • Cekim, H. O. (2020). Forecasting PM10 concentrations using time series models: A case of the most polluted cities in Turkey. Environmental Science and Pollution Research, 27, 25612–25624. https://doi.org/10.1007/s11356-020-08164-x

    Article  CAS  Google Scholar 

  • Chang, Y. S., Abimannan, S., Chiao, S. T., Lin, C. Y., & Huang, Y. P. (2020). An ensemble learning based hybrid model and framework for air pollution forecasting. Environmental Science and Pollution Research, 27, 38155–38168. https://doi.org/10.1007/s11356-020-09855-1

    Article  Google Scholar 

  • Chelani, A. B. (2018). Estimating PM2.5 concentration from satellite derived aerosol optical depth and meteorological variables using a combination model. Atmospheric Pollution Research

  • Chuang, Y. H., Mazumdar, S., Park, T., Tang, G., Arena, V. C., & Nicolich, M. J. (2011). Generalized linear mixed models in time series studies of air pollution. Atmospheric Pollution Research, 2, 428–435.

    Article  CAS  Google Scholar 

  • CNEMC (2019). China national environmental monitoring centre. http://www.cnemc.cn/. Accessed 8 Aug 2019.

  • Dong, Y., Zhang, C., Niu, M., Wang, S., & Sun, S. (2021). Air pollution forecasting with multivariate interval decomposition ensemble approach. Atmospheric Pollution Research, 12, 101230. https://doi.org/10.1016/j.apr.2021.101230

    Article  CAS  Google Scholar 

  • Drewil, G. I., & Al-Bahadili, R. J. (2022). Air pollution prediction using LSTM deep learning and metaheuristics algorithms. Measurement Sensors, 24, 100546. https://doi.org/10.1016/j.measen.2022.100546

    Article  Google Scholar 

  • Fang, S., Li, Q., Karimian, H., Liu, H., & Mo, Y. (2022). DESA: A novel hybrid decomposing-ensemble and spatiotemporal attention model for PM2.5 forecasting. Environmental Science and Pollution Research, 29, 54150–54166.

    Article  CAS  Google Scholar 

  • Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., & Wang, J. (2015). Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118–128.

    Article  CAS  Google Scholar 

  • Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production, 319, 128599.

    Article  CAS  Google Scholar 

  • Guo, Y., Tang, Q., Gong, D. Y., & Zhang, Z. (2017). Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sensing of Environment, 198, 140–149.

    Article  Google Scholar 

  • Guo, L., et al. (2018). Improving PM2.5 forecasting and emission estimation based on the Bayesian optimization method and the coupled FLEXPART-WRF model. Atmosphere, 9, 428.

    Article  CAS  Google Scholar 

  • Han, Y., Lam, J. C. K., Li, V. O., & Reiner, D. (2021). A Bayesian LSTM model to evaluate the effects of air pollution control regulations in Beijing, China. Environmental Science & Policy, 11, 26–34. https://doi.org/10.1016/j.envsci.2020.10.004

    Article  CAS  Google Scholar 

  • Hasnain, A., Sheng, Y., Hashmi, M. Z., Bhatti, U. A., Hussain, A., Hameed, M., Marjan, S., Bazai, S. U., Hossain, M. A., Sahabuddin, M., Wagan, R. A., & Zha, Y. (2022). Time series analysis and forecasting of air pollutants based on prophet forecasting model in Jiangsu Province, China. Frontiers in Environmental Science, 10, 945628. https://doi.org/10.3389/fenvs.2022.945628

    Article  Google Scholar 

  • Hasnain, A., Sheng, Y., Hashmi, M. Z., Bhatti, U. A., Ahmed, Z., & Zha, Y. (2023). Assessing the ambient air quality patterns associated to the COVID-19 outbreak in the Yangtze River Delta: A random forest approach. Chemosphere, 314, 137638. https://doi.org/10.1016/j.chemosphere.2022.137638

    Article  CAS  Google Scholar 

  • He, Q., & Huang, B. (2018). Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sensing of Environment, 206, 72–83. https://doi.org/10.1016/j.rse.2017.12.018

    Article  Google Scholar 

  • Huang, K., Xiao, Q., Meng, X., Geng, G., Wang, Y., Lyapustin, A., Gu, D., & Liu, Y. (2018). Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China plain. Environmental Pollution, 242, 675–683.

    Article  CAS  Google Scholar 

  • Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast Package for R. The Journal of Statistical Software, 27, 1–22.

    Article  Google Scholar 

  • Lee, M. H., Rahman, N. H. A., Latif, M. T., Nor, M. E., & Kamisan, N. A. B. (2012). Seasonal ARIMA for forecasting air pollution index: A case study. American Journal of Applied Sciences, 9, 570–578.

    Article  Google Scholar 

  • Lee, M., Lin, L., Chen, C. Y., Tsao, Y., et al. (2020). Forecasting air quality in Taiwan by using machine learning. Science and Reports, 10, 4153. https://doi.org/10.1038/s41598-020-61151-7

    Article  CAS  Google Scholar 

  • Liu, D., & Sun, K. (2019). Short-term PM2.5 forecasting based on CEEMD-RF in five cities of China. Environmental Science and Pollution Research, 26, 32790–32803. https://doi.org/10.1007/s11356-019-06339-9

    Article  Google Scholar 

  • Liu, Y., Cao, G., Zhao, N., Mulligan, K., & Ye, X. (2018). Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach. Environmental Pollution, 235, 272–282.

    Article  CAS  Google Scholar 

  • Lu, D., Mao, W., Zheng, L., Xiao, W., Zhang, L., & Wei, J. (2021). Ambient PM2.5 estimates and variations during COVID-19 Pandemic in the Yangtze River delta using machine learning and big data. Remote Sens, 13, 1423. https://doi.org/10.3390/rs13081423

    Article  Google Scholar 

  • Maciąg, P. S., Bembenik, R., Piekarzewicz, A., et al. (2023). Effective air pollution prediction by combining time series decomposition with stacking and bagging ensembles of evolving spiking neural networks. Environ Model Soft, 170, 105851. https://doi.org/10.1016/j.envsoft.2023.105851

    Article  Google Scholar 

  • Moisan, S., Herrera, R., & Clements, A. (2018). A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago. Chile. Int J Forecast, 34, 566–581.

    Article  Google Scholar 

  • Molina, L. L., Angon, E., Garcıa, A., Moralejo, R. H., Caballero-Villalobos, J., & Perea, J. (2018). Time series analysis of bovine venereal diseases in La Pampa, Argentina. PloS one, 13, 1–17.

    Article  Google Scholar 

  • Qiao, D. W., Yao, J., Zhang, J. W., Li, X. L., Mi, T., & Zeng, W. (2022). Short-term air quality forecasting model based on hybrid RF-IACABPNN algorithm. Environmental Science and Pollution Research, 29, 39164–39181. https://doi.org/10.1007/s11356-021-18355-9

    Article  CAS  Google Scholar 

  • Shakya, D., Deshpande, V., Goyal, M. K., & Agarwal, M. (2023). PM2.5 air pollution prediction through deep learning using meteorological, vehicular, and emission data: A case study of New Delhi India. Journal of Cleaner Production, 427, 139278. https://doi.org/10.1016/j.jclepro.2023.139278

    Article  CAS  Google Scholar 

  • Shang, Z., Deng, T., He, J., & Duan, X. (2019). A novel model for hourly PM2.5 concentration prediction based on CART and EELM. Science of the Total Environment, 651, 3043–3052.

    Article  CAS  Google Scholar 

  • Shen, J., Valagolam, D., & McCalla, S. (2020). Prophet forecasting model: A machine learning approach to predict the concentration of air pollutants (PM2.5, PM10, O3, NO2, SO2, CO) in Seoul. South Korea. PeerJ, 8, e9961. https://doi.org/10.7717/peerj.9961

    Article  Google Scholar 

  • Silva, C., Perez, P., & Trier, A. (2001). Statistical modelling and prediction of atmospheric pollution by particulate material: Two nonparametric approaches. Environmetrics, 12(2), 147–159.

    Article  CAS  Google Scholar 

  • Song, W., Jia, H., Huang, J., & Zhang, Y. (2014). A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sensing of Environment, 154, 1–7.

    Article  Google Scholar 

  • Taylor, S. J., & Letham, B. (2017). Forecasting at scale. Am. Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080

    Article  Google Scholar 

  • Wang, P., Zhang, H., Qin, Z., & Zhang, G. (2017). A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting. Atmospheric Pollution Research, 8, 850–860.

    Article  Google Scholar 

  • Wei, J., Li, Z., Pinker, R. T., Sun, L., et al. (2021). Himawari-8-derived diurnal variations of ground-level PM2.5 pollution across China using a fast space-time Light Gradient Boosting Machine. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-2020-1277

  • Wu, J., Wang, Y., Liang, J., & Yao, F. (2021). Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies. Environmental Pollution, 285, 117138. https://doi.org/10.1016/j.envpol.2021.117138

    Article  CAS  Google Scholar 

  • Wu, F., Min, P., Jin, Y., Zhang, K., Liu, H., & Zhao, J. (2023). A novel hybrid model for hourly PM2.5 prediction considering air pollution factors, meteorological parameters and GNSS-ZTD. Environmental Modelling & Software, 167, 105780.

    Article  Google Scholar 

  • Yang, W., Wu, Q., Li, J., Chen, X., et al. (2024). Predictions of air quality and challenges for eliminating air pollution during the 2022 Olympic Winter Games. Atmospheric Research, 300, 107225. https://doi.org/10.1016/j.atmosres.2024.107225

    Article  CAS  Google Scholar 

  • Ye, Z. (2019). Air pollutants prediction in Shenzhen based on Arima and prophet method. E3S Web of Conferences, 136, 05001. https://doi.org/10.1051/e3sconf/201913605001

    Article  Google Scholar 

  • Zeng, Y., Jaffe, D. A., Qiao, X., Miao, Y., & Tang, Y. (2020). Prediction of potentially high PM2.5 concentrations in Chengdu, China. Aerosol and Air Quality Research, 20, 956–965. https://doi.org/10.4209/aaqr.2019.11.0586

    Article  Google Scholar 

  • Zhang, L., Lin, J., Qiu, R., Hu, X., Zhang, H., Chen, Q., Tan, H., Lin, D., & Wang, J. (2018). Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecological Indicators, 95, 702–710.

    Article  CAS  Google Scholar 

  • Zhu, J., Lee, R. W., Twum, C., & Wei, Y. (2019). Exposure to ambient PM2.5 during pregnancy and preterm birth in metropolitan areas of the state of Georgia. Environmental Science and Pollution Research, 26, 2492–2500.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the kind and precious suggestions of Prof. Dr. Muhammad Zaffar Hashmi.

Author information

Authors and Affiliations

Authors

Contributions

Ahmad Hasnain: conceptualization; methodology; data curation; formal analysis; writing—original draft; writing—review and editing; validation; visualization. Muhammad Zaffar Hashmi: supervision, conceptualization, resources, writing—review and editing. Sohaib Khan: validation, investigation, data curation, writing—review and editing. Uzair Aslam Bhatti: supervision, investigation, conceptualization, data curation, writing—review and editing. Xiangqiang Min: data curation, formal analysis, writing—review and editing. Yin Yue: data curation, validation, writing—review and editing. Yufeng He: data curation, writing—review and editing. Geng Wei: data curation; writing—review and editing; validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Uzair Aslam Bhatti.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnain, A., Hashmi, M.Z., Khan, S. et al. Predicting ambient PM2.5 concentrations via time series models in Anhui Province, China. Environ Monit Assess 196, 487 (2024). https://doi.org/10.1007/s10661-024-12644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12644-9

Keywords

Navigation