Skip to main content
Log in

Accumulation of potentially toxic elements in fourfinger threadfin (Eleutheronema tetradactylum) and black pomfret (Parastromateus niger) from Selangor, Malaysia

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The accumulation of potentially toxic elements (PTEs) has raised public awareness due to harmful contamination to both human and marine creatures. This study was designed to determine the concentration of copper (Cu), zinc (Zn), cadmium (Cd), and nickel (Ni) in the intestine, kidney, muscle, gill, and liver tissues of local commercial edible fish, fourfinger threadfin (Eleutheronema tetradactylum), and black pomfret (Parastromateus niger) collected from Morib (M) and Kuala Selangor (KS). Among the studied PTEs, Cu and Zn were essential elements to regulate body metabolism with certain dosages required while Cd and Ni were considered as non-essential elements that posed chronic and carcinogenic risk. The concentration of PTEs in fish tissue samples was analyzed using flame atomic absorption spectrometry (F-AAS). By comparing the concentration of PTEs in fish tissues as a bioindicator, the environmental risk of Morib was more serious than Kuala Selangor because both fish species collected from Morib resulted in a higher PTEs concentration. For an average 62 kg adult with a fish ingestion rate (FIR) of 0.16 kg/person/day in Malaysia, the estimated weekly intake (EWI) of Cd from the consumption of E. tetradactylum (M: 0.0135 mg/kg; KS: 0.0134 mg/kg) and P. niger (M: 0.0140 mg/kg; KS: 0.0132 mg/kg) had exceeded the provisional tolerable weekly intake (Cd: 0.007 mg/kg) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference dose (ORD) values of Cd (0.001 mg/kg/day) as provided by the United States Environmental Protection Agency (USEPA) regional screening level, thus it posed chronic risks for daily basis consumption. Besides, the value of the carcinogenic risk of Cd (0.7−3 to 0.8−3) and Ni (0.5−3 to 0.6−3) were in between the acceptable range (10−6 to 10−4) of the health index that indicates a relatively low possibility cancer occurrence to the consumers in both Morib and Kuala Selangor. This study recommended FIR to be 0.80 kg/person/day to reduce the possibility of posing chronic and carcinogenic risks while at the same time obtaining the essential nutrients from the fish.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aghoghovwia, O. A., Ohimain, E. I., & Izah, S. C. (2016). Bioaccumulation of heavy metals in different tissues of some commercially important fish species from Warri River, Niger Delta Nigeria. . Biotechnological Research, 2(1), 25–32.

    Google Scholar 

  • Ahmad, N. I., Mahiyuddin, W. R. W., Mohamad, T. R. T., Ling, C. Y., Daud, S. F., Hussein, N. C., Abdullah, N. A., Shaharudin, R., & Sulaiman, L. H. (2016). Fish consumption pattern among adults of different ethnics in Peninsular Malaysia. Food and Nutrition Research, 60(1), 32697.

    Article  Google Scholar 

  • Ahmed, A. S., Rahman, M., Sultana, S., Babu, S. O. F., & Sarker, M. S. I. (2019). Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Marine Pollution Bulletin, 145, 436–447.

    Article  CAS  Google Scholar 

  • Alam, M. S., & Silpa, M. V. (2020). Impacts of heavy metal feed contaminants in cattle farming. In Indo Australian Workshop Transfer of Mitigation Technologies for Heat Stress in Farm Animals (pp. 147–52)

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1–14.

    Google Scholar 

  • Ali, S., Afshan, S., Ameen, U. S., Farid, M., Bharwana, S. A., Hannan, F., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences, 2(1), 74–79.

    Google Scholar 

  • Alina, M., Azrina, A., Mohd Yunus, A. S., Zakiuddin, S. M., Effendi, H. M. I., & Rizal, R. M. (2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. International Food Research Journal, 19(1), 135–140.

    CAS  Google Scholar 

  • Altarelli, M., Ben-Hamouda, N., Schneider, A., & Berger, M. M. (2019). Copper deficiency: Causes, manifestations, and treatment. Nutrition in Clinical Practice, 34(4), 504–513.

    Article  CAS  Google Scholar 

  • Aly, M. Y. (2016). Comparison of heavy metals levels in muscles, liver and gills of three fish species collected from agricultural drainage water AT El-Abbassa fish farm, Sharkia Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 20(3), 103–112.

    Article  Google Scholar 

  • Barone, G., Storelli, A., Garofalo, R., Busco, V. P., Quaglia, N. C., Centrone, G., & Storelli, M. M. (2015). Assessment of mercury and cadmium via seafood consumption in Italy: Estimated dietary intake (EWI) and target hazard quotient (THQ). Food Additives and Contaminants: Part A, 32(8), 1277–1286.

    Article  CAS  Google Scholar 

  • Bilandžić, N., Čalopek, B., Sedak, M., Đokić, M., Gajger, I. T., Murati, T., & Kmetič, I. (2021). Essential and potentially toxic elements in raw milk from different geographical regions of Croatia and their health risk assessment in the adult population. Journal of Food Composition and Analysis, 104, 104–152.

    Article  Google Scholar 

  • Carolina. (2022). Perch Dissection. Carolina Biological Supply Company. https://www.carolina.com/teacher-resources/Interactive/perch-dissection/tr10820.tr

  • Chasapis, C. T., Ntoupa, P. S. A., Spiliopoulou, C. A., & Stefanidou, M. E. (2020). Recent aspects of the effects of zinc on human health. Archives of Toxicology, 94, 1443–1460.

    Article  CAS  Google Scholar 

  • Chowdhury, R., Ramond, A., O’Keeffe, L. M., Shahzad, S., Kunutsor, S. K., Muka, T., Gregson, J., Willeit, P., Warnakula, S., Khan, H., Chowdhury, S., Gregson, J., Gobin, R, Franco, O. H., & Di Angelantonio, E. (2018). Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ, 362.

  • Desguin, B., Fellner, M., Riant, O., Hu, J., Hausinger, R. P., Hols, P., & Soumillion, P. (2018). Biosynthesis of the nickel-pincer nucleotide cofactor of lactate racemase requires a CTP-dependent cyclometallase. Journal of Biological Chemistry, 293(32), 12303–12317.

    Article  CAS  Google Scholar 

  • Djedjibegovic, J., Marjanovic, A., Tahirovic, D., Caklovica, K., Turalic, A., Lugusic, A., Omeragic, E., Sober, M., & Caklovica, F. (2020). Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Scientific Reports, 10(1), 13238.

    Article  CAS  Google Scholar 

  • Doguer, C., Ha, J. H., & Collins, J. F. (2018). Intersection of iron and copper metabolism in the mammalian intestine and liver. Comprehensive Physiology, 8(4), 1433.

    Article  Google Scholar 

  • Embrandiri, A., Singh, R. P., Ibrahim, H. M., & Ramli, A. A. (2012). Land application of biomass residue generated from palm oil processing: Its potential benefits and threats. The Environmentalist, 32, 111–117.

    Article  Google Scholar 

  • Ettler, V., Mihaljevič, M., Drahota, P., Kříbek, B., Nyambe, I., Vaněk, A., ... & Natherová, V. (2022). Cobalt-bearing copper slags from Luanshya (Zambian Copperbelt): mineralogy, geochemistry, and potential recovery of critical metals. Journal of Geochemical Exploration, 237, 106987.

  • European Food Safety Authority (EFSA). (2006). Commission Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs.

  • European Food Safety Authority (EFSA). (2023). Commission Regulation (EC) No. 2023/915 on maximum levels for certain contaminants in food and repealing Regulation (EC) No. 1881/2006.

  • Federal Environmental Protection Agency (FEPA). (2003). Guideline and standards for environmental pollution and control in Nigeria. Nigeria: Federal Environmental Protection Agency.

    Google Scholar 

  • Food and Agriculture Organisation (FAO). (1983). Compilation of legal limits for hazardous substances in fish and fishery products.: FAO Fisheries Circular No. 764. Fishery Resources and Environment Division. https://www.fao.org/documents/card/en?details=f10b9f33-e903-572a-8141-c9712377acc8

  • Freitas, E. P. S., Cunha, A. T. O., Aquino, S. L. S., Pedrosa, L. F. C., Lima, S. C. V. C., Lima, J. G., Almeida, M. G., & Sena-Evangelista, K. C. M. (2017). Zinc status biomarkers and cardiometabolic risk factors in metabolic syndrome: a case-control study. Nutrients, 9(2), 175.

    Article  Google Scholar 

  • Froese, R., & Pauly, D. (2010). FishBase. World Wide Web electronic publication. https://www.fishbase.se/search.php

  • Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020a). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679.

  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020b). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.

    Article  CAS  Google Scholar 

  • Gu, Y. G., Lin, Q., Huang, H. H., Wang, L. G., Ning, J. J., & Du, F. Y. (2017). Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea. Marine Pollution Bulletin, 114(2), 1125–1129.

    Article  CAS  Google Scholar 

  • Gunturu, S., & Dharmarajan, T. S. (2020). Copper and zinc. In Geriatric Gastroenterology (pp. 1–17). https://link.springer.com/referenceworkentry/10.1007/978-3-030-30192-7_25

  • Gupta, T., & Mullins, M. C. (2010). Dissection of organs from the adult zebrafish. JoVE (journal of Visualized Experiments), 37, e1717.

    Google Scholar 

  • Hashempour-Baltork, F., Jannat, B., Tajdar-Oranj, B., Aminzare, M., Sahebi, H., Alizadeh, A. M., & Hosseini, H. (2023). A comprehensive systematic review and health risk assessment of potentially toxic element intakes via fish consumption in Iran. Ecotoxicology and Environmental Safety, 249, 114349.

    Article  CAS  Google Scholar 

  • Hashim, R., Song, T. H., Muslim, N. Z. M., & Yen. (2014). Determination of heavy metal levels in fishes from the lower reach of the Kelantan River, Kelantan. Malaysia. Tropical Life Sciences Research, 25(2), 21–39.

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (1993). Exposures in the Glass Manufacturing Industry. In Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. International Agency for Research on Cancer. https://www.ncbi.nlm.nih.gov/books/NBK499748/

  • Ibrahim, T. N. B. T., Othman, F., & Mahmood, N. Z. (2020). Baseline study of heavy metal pollution in a tropical river in a developing country. Sains Malaysiana, 49(4), 729–742.

    Article  CAS  Google Scholar 

  • Idera, F., Omotola, O., Adedayo, A., & Paul, U. J. (2015). Comparison of acid mixtures using conventional wet digestion methods for determination of heavy metals in Fish Tissues. Journal of Scientific Research and Reports, 8(7), 1–9.

    Article  Google Scholar 

  • Ishchenko, V. (2018). Environment contamination with heavy metals contained in waste. Environmental Problems, 3(1), 21–24.

    Google Scholar 

  • Jabatan Perikanan Malaysia. (2022, October 3). Fisheries Industry Scenario - Department of Fisheries Malaysia Official portal. Department of Fisheries Malaysia Official Portal. https://www.dof.gov.my/en/corporate-info/introduction/fisheries-industry-scenario/

  • Javed, M., & Usmani, N. (2019). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section b: Biological Sciences, 89, 389–403.

    Article  CAS  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). (2022). Limit Test for Heavy Metals in Food Additive Specifications — Explanatory Note. Rome. https://www.fao.org/documents/card/en?details=f9d29932-9975-479c-8528-b8d3cc8ed34e/

  • Kadhum, S. A., Ishak, M. Y., Zulkifli, S. Z., & binti Hashim, R. (2015). Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin, 101(1), 391–396.

    Article  CAS  Google Scholar 

  • Kalantzi, I., Pergantis, S. A., Black, K. D., Shimmield, T. M., Papageorgiou, N., Tsapakis, M., & Karakassis, I. (2016). Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chemistry, 194, 659–670.

    Article  CAS  Google Scholar 

  • Kanda, A., Ncube, F., Mabote, R. R., Mudzamiri, T., Kunaka, K., & Dhliwayo, M. (2020). Trace elements in water, sediment and commonly consumed fish from a fish farm (NE Zimbabwe) and risk assessments. SN Applied Sciences, 2(9), 1–14.

    Article  Google Scholar 

  • Kania, H., & Saternus, M. (2023). Evaluation and current state of primary and secondary zinc production—a review. Applied Sciences, 13(3), 2003.

    Article  CAS  Google Scholar 

  • Kaya, M., Hussaini, S., & Kursunoglu, S. (2020). Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy, 195, 105362.

    Article  CAS  Google Scholar 

  • Khan, I., Bilal, A., Shakeel, K., & Malik, F. T. (2022). Effects of nickel toxicity on various organs of the Swiss albino mice. Uttar Pradesh Journal of Zoology, 43, 1–12.

    Article  Google Scholar 

  • Kim, H. Y. (2013). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry and Endodontics, 38(1), 52–54.

    Article  Google Scholar 

  • Kumar, V., Swain, H. S., Upadhyay, A., Ramteke, M. H., Sarkar, D. J., Roy, S., & Das, B. K. (2023). Bioaccumulation of potentially toxic elements in commercially important food fish species from lower Gangetic stretch: food security and human health risk assessment. Biological Trace Element Research, 202, 1235–1248.

    Article  Google Scholar 

  • Lall, S. P., & Kaushik, S. J. (2021). Nutrition and metabolism of minerals in fish. Animals, 11(09), 2711.

    Article  Google Scholar 

  • Lipy, E. P., Hakim, M., Mohanta, L. C., Islam, D., Lyzu, C., Roy, D. C., ... & Sayed, A. (2021). Assessment of heavy metal concentration in water, sediment and common fish species of Dhaleshwari River in Bangladesh and their health implications. Biological Trace Element Research, 199(11), 4295–4307.

  • Loomis, D., Huang, W., & Chen, G. (2014). The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chinese Journal of Cancer, 33(4), 189.

    Article  CAS  Google Scholar 

  • Mahboob, S., Kausar, S., Jabeen, F., Sultana, S., Sultana, T., Al-Ghanim, K. A., Hussain, B., Al-Misned, F., & Ahmed, Z. (2016). Effect of heavy metals on liver, kidney, gills and muscles of Cyprinus carpio and Wallago attu inhabited in the Indus. Brazilian Archives of Biology and Technology, 59, 1–10.

    Article  Google Scholar 

  • Malaysia Food Act. (1983). Laws of Malaysia Act 281. The commissioner of law Revision.

    Google Scholar 

  • Malviya, P., Verma, A. K., Chaurasia, A. K., Parmar, H., Thakur, L. S., Kumbhkar, P., & Shah, P. (2023). Heavy Metals Contaminants Threat to Environment: It’s Possible Treatment. In Transportation Energy and Dynamics (pp. 323–341).

  • Matsunuma, M., Motomura, H., Matsuura, K., Shazili, N. A. M., Ambak, M. A., & Meguro, M. (2011). Fishes of Terengganu: East coast of Malay Peninsula (p. 251). National Museum of Nature and Science.

    Google Scholar 

  • Maurya, P. K., Malik, D. S., Yadav, K. K., Kumar, A., Kumar, S., & Kamyab, H. (2019). Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicology Reports, 6, 472–481.

    Article  CAS  Google Scholar 

  • Mehmood, M. A., Qadri, H., Bhat, R. A., Rashid, A., Ganie, S. A., & Dar, G. H. (2019). Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environmental Monitoring and Assessment, 191(2), 1–16.

    Article  CAS  Google Scholar 

  • Mezynska, M., & Brzóska, M. M. (2018). Environmental exposure to cadmium—a risk for health of the general population in industrialized countries and preventive strategies. Environmental Science and Pollution Research, 25, 3211–3232.

    Article  CAS  Google Scholar 

  • Mhungu, F., Chen, K., Wang, Y., Liu, Y., Zhang, Y., Pan, X., Cheng, Y., Liu, Y., & Zhang, W. (2022). Probabilistic risk assessment of dietary exposure to cadmium in residents of Guangzhou, China—young children potentially at a health risk. International Journal of Environmental Research and Public Health, 19(15), 9572.

    Article  CAS  Google Scholar 

  • Mudd, G. M., Jowitt, S. M., & Werner, T. T. (2017). The world’s lead-zinc mineral resources: Scarcity, data, issues and opportunities. Ore Geology Reviews, 80, 1160–1190.

    Article  Google Scholar 

  • Mulware, S. J. (2020). Toxicity of Heavy Metals, A. Subject in Review. International Journal of Recent Research in Physics and Chemical Sciences, 6(2), 30–43

  • Myint, Z. W., Oo, T. H., Thein, K. Z., Tun, A. M., & Saeed, H. (2018). Copper deficiency anemia. Annals of Hematology, 97, 1527–1534.

    Article  CAS  Google Scholar 

  • Ng, C. C., Boyce, A. N., Abas, M. R., Mahmood, N. Z., & Han, F. (2019). Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal–contaminated soil. Environmental Monitoring and Assessment, 191, 1–16.

    Article  CAS  Google Scholar 

  • Nguyen, B. T., Do, D. D., Nguyen, T. X., Nguyen, V. N., Nguyen, D. T. P., Nguyen, M. H., ... & Bach, Q. V. (2020). Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam. Environmental Pollution, 256, 113412.

  • Nielsen, F. (2021). Nickel. Advances in Nutrition, 12(1), 281.

    Article  Google Scholar 

  • Onita, B., Albu, P., Herman, H., Balta, C., Lazar, V., Fulop, A., ... & Dinischiotu, A. (2021). Correlation between heavy metal-induced histopathological changes and trophic interactions between different fish species. Applied Sciences11(9), 3760.

  • Othman, F., Uddin Chowdhury, M. S., Wan Jaafar, W. Z., Mohammad Faresh, E. M., & Shirazi, S. M. (2018). Assessing risk and sources of heavy metals in a tropical river basin: a case study of the Selangor River, Malaysia. Polish Journal of Environmental Studies, 27(4), 1659–1671.

    Article  CAS  Google Scholar 

  • Pandey, G., & Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2(2), 17–23.

    CAS  Google Scholar 

  • Parveen, N., Ansari, M. O., Ahmad, M. F., Jameel, S., & Shadab, G. G. H. A. (2017). Zinc: An element of extensive medical importance. Current Medicine Research and Practice, 7(3), 90–98.

    Article  Google Scholar 

  • Rahman, N. A., & Rahim, R. A. (2019). Assessment of heavy metals concentration in Gelama fish and water at Kuala Selangor and its potential health risk to human. Health Scope, 1, 213–218.

    Google Scholar 

  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.

    Google Scholar 

  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184.

    Article  CAS  Google Scholar 

  • Royer, A., & Sharman, T. (2023). Copper Toxicity. In StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK557456/

  • Salam, M. A., Dayal, S. R., Siddiqua, S. A., Muhib, M., Bhowmik, S., Kabir, M. M., & Srzednicki, G. (2021). Risk assessment of heavy metals in marine fish and seafood from Kedah and Selangor coastal regions of Malaysia: A high-risk health concern for consumers. Environmental Science and Pollution Research, 28(39), 55166–55175.

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., Hossain, M. B., Chung, S. Y., Khatibi, R., & Nadiri, A. A. (2020). A study of health risk from accumulation of metals in commercial edible fish species at Tuticorin coasts of southern India. Estuarine, Coastal and Shelf Science, 245, 106929.

    Article  CAS  Google Scholar 

  • Shan, Y., Tysklind, M., Hao, F., Ouyang, W., Chen, S., & Lin, C. (2013). Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soils and Sediments, 13, 720–729.

    Article  CAS  Google Scholar 

  • Smith, R. L. (1995). EPA region III risk-based concentration table: background information. United States Environmental Protection Agency. https://semspub.epa.gov/work/05/229825.pdf

  • Song, X., Kenston, S. S. F., Kong, L., & Zhao, J. (2017). Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology, 392, 47–54.

    Article  CAS  Google Scholar 

  • Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. Nanobioscience, 10(2), 2148–2166.

    Article  Google Scholar 

  • Sridhar, M. K. C., & Hammed, T. B. (2016). Dynamics of metal reuse and recycling in informal sector in developing countries. In Metal Sustainability: Global Challenges, Consequences, and Prospects (pp. 85–108).

  • Statista. (2023). Number of population in Malaysia as of July 2023, by state. Statista Research Department. https://www.statista.com/statistics/1040670/malaysia-population-distribution-by-state/#:~:text=As%20of%20July%202023%2C%20the,terms%20of%20gross%20domestic%20product

  • Tabelin, C. B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., ... & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and E-wastes: a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610.

  • Terech-Majewska, E., Pajdak, J., & Siwicki, A. K. (2016). Water as a source of macronutrients and micronutrients for fish with special emphasis on the nutritional requirements of two fish species: The common carp (Cyprinus carpio) and the rainbow trout (Oncorhynchus mykiss). Journal of Elementology, 21(3), 947–961.

    Google Scholar 

  • Tinkov, A. A., Filippini, T., Ajsuvakova, O. P., Skalnaya, M. G., Aaseth, J., Bjørklund, G., ... & Skalny, A. V. (2018). Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environmental research, 162, 240–260.

  • Traina, A., Bono, G., Bonsignore, M., Falco, F., Giuga, M., Quinci, E. M., ... & Sprovieri, M. (2019). Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): potential human health risk estimation. Ecotoxicology and Environmental Safety168, 466–478.

  • United States Environmental Protection Agency. (2000). Guidance for assessing chemical contaminant data for use in fish advisories. Risk Assessment and Fish Consumption Limits Third Edition, 2. Office of Science and Technology. Office of Water. https://www.epa.gov/sites/default/files/2015-06/documents/volume2.pdf

  • United States Environmental Protection Agency. (2023). Human Health Risk Assessment. Regional Screening Levels (RSLs) - Generics table. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  • Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237.

    Article  Google Scholar 

  • Vu, C. T., Lin, C., Yeh, G., & Villanueva, M. C. (2017). Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environmental Science and Pollution Research, 24(23), 19422–19434.

    Article  CAS  Google Scholar 

  • World Health Organization. (1995, March). Application of Risk Analysis to Food Standards Issues. Report of the Joint FAO/WHO Expert Consultation. https://www.who.int/publications-detail-redirect/WHO-FNU-FOS-95

  • Yao, Q., Chen, L., Mao, L., Ma, Y., Tian, F., Wang, R., ... & Li, F. (2022). Co-effects of hydrological conditions and industrial activities on the distribution of heavy metal pollution in Taipu River, China. International Journal of Environmental Research and Public Health, 19(16), 10116.

  • Yap, C. K., & Al-Mutairi, K. A. (2022). Copper and zinc levels in commercial marine fish from setiu, east coast of Peninsular Malaysia. Toxics, 10(2), 52.

    Article  CAS  Google Scholar 

  • Yunus, S. M., Hamzah, Z., Wood, A. K. H., & Saat, A. (2015). Natural radionuclides and heavy metals pollution in seawater at Kuala Langat coastal area. Malaysian Journal of Analytical Sciences, 19(4), 766–774.

    Google Scholar 

  • Zaghloul, G. Y., El-Din, H. M. E., Mohamedein, L. I., & El-Moselhy, K. M. (2022). Bio-accumulation and health risk assessment of heavy metals in different edible fish species from Hurghada City, Red Sea. Egypt. Environmental Toxicology and Pharmacology, 95, 103969.

    Article  CAS  Google Scholar 

  • Zeinali, T., Salmani, F., & Naseri, K. (2019). Dietary intake of cadmium, chromium, copper, nickel, and lead through the consumption of meat, liver, and kidney and assessment of human health risk in Birjand, Southeast of Iran. Biological Trace Element Research, 191, 338–347.

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Xiamen University Malaysia through the XMUMRF/2021-C7/ICAM/0008 grant.

Author information

Authors and Affiliations

Authors

Contributions

Peggy Pei Yee Tek: conceptualization, methodology, data curation, writing an original draft. Chuck Chuan Ng: investigation, supervision, resources, reviewing and editing.

Corresponding author

Correspondence to Chuck Chuan Ng.

Ethics declarations

Declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors. Moreover, it is important to note that both data availability and animal ethics declaration are not applicable in this context.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tek, P.P.Y., Ng, C.C. Accumulation of potentially toxic elements in fourfinger threadfin (Eleutheronema tetradactylum) and black pomfret (Parastromateus niger) from Selangor, Malaysia. Environ Monit Assess 196, 382 (2024). https://doi.org/10.1007/s10661-024-12508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12508-2

Keywords

Navigation