Skip to main content
Log in

Evaluating the potential of Abelmoschus esculentus, Solanum melongena, and Capsicum annuum spp. for nutrient and microbial reduction from wastewater in hybrid constructed wetland

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Utilizing engineered wetlands for the cultivation of vegetables can help to overcome the problems of water and food scarcity. These wetlands are primarily designed for wastewater treatment, and their efficiency and effectiveness can be improved by selecting an appropriate substrate. To investigate the potential for nutrient and microbial removal, the Abelmoschus esculentus, Solanum melongena, and Capsicum annuum L. plants were selected to grow in a hybrid constructed wetland (CW) under natural conditions. The removal efficiency of the A. esculentus, S. melongena, and C. annuum L. in the CW system varied between 59.8 to 68.5% for total phosphorous (TP), 40.3 to 53.1% for ammonium (NH4+), and 33.6 to 45.1% for total nitrogen (TN). The influent sample contained multiple pathogenic bacteria, including Alcaligenes faecalis, Staphylococcus aureus, and Escherichia coli, with Capsicum annuum exhibiting a positive association with 7 of the 11 detected species, whereas microbial removal efficiency was notably higher in the S. melongena bed, potentially attributed to temperature variations and plant-facilitated oxygen release rates. While utilizing constructed wetlands for vegetable cultivation holds promising potential to address the disparity between water and food supply and yield various environmental, economic, and social benefits, it is crucial to note that the wastewater source may contain heavy metals, posing a risk of their transmission to humans through the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abbasi, H. N., Lu, X., Xu, F., & Xie, J. (2016). Wastewater treatment strategies in China: An overview. Science. Letter, 4(1), 15–25.

    Google Scholar 

  • Abbasi, H. N., Xie, J., Hussain, S. I., & Lu, X. (2019). Nutrient removal in hybrid constructed wetlands: Spatial-seasonal variation and the effect of vegetation. Water Science and Technology, 79(10), 1985–1994. https://doi.org/10.2166/wst.2019.196

    Article  PubMed  CAS  Google Scholar 

  • Almuktar, S. A., Abed, S. N., & Scholz, M. (2018). Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research, 25, 23595–23623. https://doi.org/10.1007/s11356-018-2629-3

    Article  PubMed  CAS  Google Scholar 

  • APHA (1998). Standard methods for the examination of water and wastewater. Method 4500-ClO2 E, 473–479. https://doi.org/10.2105/ajph.56.3.387

  • Bastviken, S. K., Eriksson, P., Premrov, A., & Tonderski, K. (2005). Potential denitrification in wetland sediments with different plant species detritus. Ecological Engineering, 25(2), 183–190. https://doi.org/10.1016/j.ecoleng.2005.04.013

    Article  Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5), 11–17. https://doi.org/10.1016/S0273-1223(97)00047-4

    Article  CAS  Google Scholar 

  • Chand, N., Kumar, K., & Suthar, S. (2022). Enhanced wastewater nutrients removal in vertical subsurface flow constructed wetland: Effect of biochar addition and tidal flow operation. Chemosphere, 286, 131742. https://doi.org/10.1016/j.chemosphere.2021.131742

    Article  PubMed  CAS  Google Scholar 

  • Cornejo, P. K., Becker, J., Pagilla, K., Mo, W., Zhang, Q., Mihelcic, J. R., . . . Rosso, D. (2019). Sustainability metrics for assessing water resource recovery facilities of the future. Water Environment Research, 91(1), 45–53. https://doi.org/10.2175/106143017X15131012187980

  • Ding, Y., Song, X., Wang, Y., & Yan, D. (2012). Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland. Ecological Engineering, 46, 107–111. https://doi.org/10.1016/j.ecoleng.2012.06.002

    Article  Google Scholar 

  • Elfanssi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2018). Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. International Journal of Phytoremediation, 20(1), 75–87. https://doi.org/10.1080/15226514.2017.1337067

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, S. P., & Richardson, C. J. (2020). Physical and chemical characteristics of freshwater wetland soils. Constructed Wetlands for Wastewater Treatment, 41–72, 9781003069850.

    Google Scholar 

  • Gerke, J. (2015). The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. Journal of Plant Nutrition and Soil Science, 178(3), 351–364. https://doi.org/10.1002/jpln.201400590

    Article  MathSciNet  CAS  Google Scholar 

  • Gizińska-Górna, M., Jóźwiakowski, K., & Marzec, M. (2020). Reliability and efficiency of pollutant removal in four-stage constructed wetland of SSVF-SSHF-SSHF-SSVF type. Water, 12(11), 3153. https://doi.org/10.3390/w12113153

    Article  CAS  Google Scholar 

  • Haarstad, K., Bavor, H., & Mæhlum, T. (2012). Organic and metallic pollutants in water treatment and natural wetlands: A review. Water Science and Technology, 65(1), 76–99. https://doi.org/10.2166/wst.2011.831

    Article  PubMed  CAS  Google Scholar 

  • He, Y., Peng, L., Hua, Y., Zhao, J., & Xiao, N. (2018). Treatment for domestic wastewater from university dorms using a hybrid constructed wetland at pilot scale. Environmental Science and Pollution Research, 25, 8532–8541. https://doi.org/10.1007/s11356-017-1168-7

    Article  PubMed  CAS  Google Scholar 

  • Hota, A., Patro, S. G. K., Obaid, A. J., Khatak, S., & Kumar, R. (2023). Constructed wetland challenges for the treatment of industrial wastewater in smart cities: A sensitive solution. Sustainable Energy Technologies and Assessments, 55, 102967. https://doi.org/10.1016/j.seta.2022.102967

    Article  Google Scholar 

  • Ji, M., Hu, Z., Hou, C., Liu, H., Ngo, H. H., Guo, W., . . . Zhang, J. (2020). New insights for enhancing the performance of constructed wetlands at low temperatures. Bioresource technology, 301, 122722. https://doi.org/10.1016/j.biortech.2019.122722

  • Jiang, L., & Chui, T. F. M. (2022). A review of the application of constructed wetlands (CWs) and their hydraulic, water quality and biological responses to changing hydrological conditions. Ecological Engineering, 174, 106459. https://doi.org/10.1016/j.ecoleng.2021.106459

    Article  Google Scholar 

  • Joshi, R., Singh, J., & Vig, A. P. (2015). Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/technology, 14, 137–159. https://doi.org/10.1007/s11157-014-9347-1

    Article  CAS  Google Scholar 

  • Kamilya, T., Yadav, M. K., Ayoob, S., Tripathy, S., Bhatnagar, A., & Gupta, A. K. (2022). Emerging impacts of steroids and antibiotics on the environment and their remediation using constructed wetlands: A critical review. Chemical Engineering Journal, 138759. https://doi.org/10.1016/j.cej.2022.138759

  • Kouki, S., M’hiri, F., Saidi, N., Belaïd, S., & Hassen, A. (2009).Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination, 246(1-3), 452-467. https://doi.org/10.1016/j.desal.2008.03.067

  • Kuschk, P., Wiessner, A., Kappelmeyer, U., Weissbrodt, E., Kästner, M., & Stottmeister, U. (2003). Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Research, 37(17), 4236–4242. https://doi.org/10.1016/S0043-1354(03)00163-5

    Article  PubMed  CAS  Google Scholar 

  • Lai, W.-L., Wang, S.-Q., Peng, C.-L., & Chen, Z.-H. (2011). Root features related to plant growth and nutrient removal of 35 wetland plants. Water Research, 45(13), 3941–3950. https://doi.org/10.1016/j.watres.2011.05.002

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Yang, J., Qiao, Z., Wang, Y., & Miao, S. (2021). Urban thermal characteristics of local climate zones and their mitigation measures across cities in different climate zones of China. Remote Sensing, 13(8), 1468. https://doi.org/10.3390/rs13081468

    Article  ADS  CAS  Google Scholar 

  • Lu, S., Wu, F., Lu, Y., Xiang, C., Zhang, P., & Jin, C. (2009). Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering, 35(3), 402–409. https://doi.org/10.1016/j.ecoleng.2008.10.002

    Article  Google Scholar 

  • Malinen, E., Rinttilä, T., Kajander, K., Mättö, J., Kassinen, A., Krogius, L., . . . Palva, A. (2005). Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Official journal of the American College of Gastroenterology| ACG, 100(2), 373–382. 100(2):p 373–382.

  • Malyan, S. K., Yadav, S., Sonkar, V., Goyal, V., Singh, O., & Singh, R. (2021). Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environment Research, 93(10), 1882–1909. https://doi.org/10.1002/wer.1599

    Article  PubMed  CAS  Google Scholar 

  • Marcelino, G. R., de Carvalho, K. Q., de Lima, M. X., Passig, F. H., Belini, A. D., Bernardelli, J. K. B., & Nagalli, A. (2020). Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, acetaminophen and ethinylestradiol from low-strength synthetic wastewater. Science of the Total Environment, 728, 138771. https://doi.org/10.1016/j.scitotenv.2020.138771

    Article  ADS  PubMed  CAS  Google Scholar 

  • Martín, M., Oliver, N., Hernández-Crespo, C., Gargallo, S., & Regidor, M. (2013). The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering, 50, 52–61. https://doi.org/10.1016/j.ecoleng.2012.04.029

    Article  Google Scholar 

  • Mburu, N., Tebitendwa, S. M., Rousseau, D. P., Van Bruggen, J., & Lens, P. N. (2013). Performance evaluation of horizontal subsurface flow–constructed wetlands for the treatment of domestic wastewater in the tropics. Journal of Environmental Engineering, 139(3), 358–367. https://doi.org/10.1061/(ASCE)EE.1943-7870.000063

    Article  CAS  Google Scholar 

  • Meena, R. S., Vijayakumar, V., Yadav, G. S., & Mitran, T. (2018). Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regulation, 84, 207–223. https://doi.org/10.1007/s10725-017-0334-8

    Article  CAS  Google Scholar 

  • Nguyen, X. C., Chang, S. W., Nguyen, T. L., Ngo, H. H., Kumar, G., Banu, J. R., . . . Nguyen, D. D. (2018). A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models. Journal of Environmental Management, 222, 378–384. https://doi.org/10.1016/j.jenvman.2018.05.085

  • Niazi, S., Hassanvand, M. S., Mahvi, A. H., Nabizadeh, R., Alimohammadi, M., Nabavi, S., . . . Moradi-Joo, M. (2015). Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environmental Science and Pollution Research, 22, 16014–16021. https://doi.org/10.1007/s11356-015-4793-z

  • Odinga, C., Swalaha, F., Otieno, F., Ranjith, K. R., & Bux, F. (2013). Investigating the efficiency of constructed wetlands in the removal of heavy metals and enteric pathogens from wastewater. Environmental Technology Reviews, 2(1), 1–16. https://doi.org/10.1080/21622515.2013.865086

    Article  CAS  Google Scholar 

  • Okoh, A. I., Odjadjare, E. E., Igbinosa, E. O., & Osode, A. N. (2007). Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. African Journal of Biotechnology, 6(25). https://doi.org/10.5897/AJB2007.000-2462

  • Overton, O. C., Olson, L. H., Majumder, S. D., Shwiyyat, H., Foltz, M. E., & Nairn, R. W. (2023). Wetland removal mechanisms for emerging contaminants. Land, 12(2), 472.

    Article  Google Scholar 

  • Pahunang, R. R., Buonerba, A., Senatore, V., Oliva, G., Ouda, M., Zarra, T., . . . Li, C.-W. (2021). Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. Science of the total environment, 792, 148479. https://doi.org/10.3390/land12020472

  • Patyal, V., Jaspal, D., & Khare, K. (2021). Materials in constructed wetlands for wastewater remediation: A review. Water Environment Research, 93(12), 2853–2872. https://doi.org/10.1002/wer.1648

    Article  PubMed  CAS  Google Scholar 

  • Qu, J., Dai, X., Hu, H.-Y., Huang, X., Chen, Z., Li, T., . . . Daigger, G. T. (2022). Emerging trends and prospects for municipal wastewater management in China. ACS ES&T Engineering, 2(3), 323–336. https://doi.org/10.1021/acsestengg.1c00345

  • Richardson, A. E., Lynch, J. P., Ryan, P. R., Delhaize, E., Smith, F. A., Smith, S. E., . . . Lambers, H. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and soil, 349, 121–156. https://doi.org/10.1007/s11104-011-0950-4

  • Rockström, J., Falkenmark, M., Allan, T., Folke, C., Gordon, L., Jägerskog, A., . . . Molden, D. (2014). The unfolding water drama in the Anthropocene: Towards a resilience‐based perspective on water for global sustainability. Ecohydrology, 7(5), 1249–1261. https://doi.org/10.1002/eco.1562

  • Rozema, E. R., Rozema, L. R., & Zheng, Y. (2016). A vertical flow constructed wetland for the treatment of winery process water and domestic sewage in Ontario, Canada: Six years of performance data. Ecological Engineering, 86, 262–268. https://doi.org/10.1016/j.ecoleng.2015.11.006

    Article  Google Scholar 

  • Sojobi, A. O., & Zayed, T. (2022). Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environmental Research, 203, 111609. https://doi.org/10.1016/j.envres.2021.111609

    Article  ADS  PubMed  CAS  Google Scholar 

  • Srivastava, J., Gupta, A., & Chandra, H. (2008). Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Bio/technology, 7, 255–266. https://doi.org/10.1007/s11157-008-9135-x

    Article  CAS  Google Scholar 

  • Stefanakis, A. I., & Tsihrintzis, V. A. (2012). Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chemical Engineering Journal, 181, 416–430. https://doi.org/10.1016/j.cej.2011.11.108

    Article  CAS  Google Scholar 

  • Stott, R., Jenkins, T., Salem, M., & Butler, J. (1997). Removal of parasite ova from domestic wastewater by gravel bed hydroponic constructed wetlands. WEF Beneficial Reuse of Water and Biosolids Specialty Conference, Malaga, Spain.

  • Su, F., Li, Z., Li, Y., Xu, L., Li, Y., Li, S., . . . Wang, F. (2019). Removal of total nitrogen and phosphorus using single or combinations of aquatic plants. International journal of environmental research and public health, 16(23), 4663. https://doi.org/10.3390/ijerph16234663

  • Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. Science of the Total Environment, 407(13), 3958–3971. https://doi.org/10.1016/j.scitotenv.2008.11.036

    Article  ADS  PubMed  CAS  Google Scholar 

  • Tuncsiper, B. (2007). Removal of nutrient and bacteria in pilot-scale constructed wetlands. Journal of Environmental Science and Health, Part A, 42(8), 1117–1124. https://doi.org/10.1080/10934520701418615

    Article  CAS  Google Scholar 

  • Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., . . . Papenbrock, J. (2021). From natural habitats to successful application-role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583

  • Velasco, P., Devanadera, M. C., Dalisay, M., Mueca, C., Estorba, D. S., & Lecciones, A. (2023). Nature-based solutions for domestic wastewater treatment in the Philippines. In Regional Perspectives of Nature-based Solutions for Water: Benefits and Challenges (pp. 175–201). Springer. https://doi.org/10.1007/978-3-031-18412-3_7

  • Wang, J., Wang, W., Xiong, J., Li, L., Zhao, B., Sohail, I., & He, Z. (2021). A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. Journal of Environmental Management, 280, 111794. https://doi.org/10.1016/j.jenvman.2020.111794

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Liang, J., Yang, J., Ma, X., Li, X., Wu, J., . . . Feng, Y. (2019). Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. Journal of Environmental Management, 237, 15–23. https://doi.org/10.1016/j.jenvman.2019.02.070

  • Werker, A., Dougherty, J., McHenry, J., & Van Loon, W. (2002). Treatment variability for wetland wastewater treatment design in cold climates. Ecological Engineering, 19(1), 1–11. https://doi.org/10.1016/S0925-8574(02)00016-2

    Article  Google Scholar 

  • Whitman, W. B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., . . . Dedysh, S. (2015). Bergey’s manual of systematics of archaea and bacteria, 410. Wiley Online Library. https://doi.org/10.1002/9781118960608

  • Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R., & Dong, R. (2016). Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 541, 8–22. https://doi.org/10.1016/j.scitotenv.2015.09.047

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wu, H., Wang, R., Yan, P., Wu, S., Chen, Z., Zhao, Y., . . . Guo, Z. (2023). Constructed wetlands for pollution control. Nature Reviews Earth & Environment, 1–17. https://doi.org/10.1038/s43017-023-00395-z

  • Yang, Y., Wang, L., Xiang, F., Zhao, L., & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones. International Journal of Environmental Research and Public Health, 17(2), 436. https://doi.org/10.3390/ijerph17020436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yousefi, Z., & Mohseni-Bandpei, A. (2010). Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecological Engineering, 36(6), 777–782. https://doi.org/10.1016/j.ecoleng.2010.02.002

    Article  Google Scholar 

  • Zhang, Z., Rengel, Z., & Meney, K. (2009). Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectus validus. Aquatic Botany, 91(2), 71–74. https://doi.org/10.1016/j.aquabot.2009.02.002

    Article  CAS  Google Scholar 

  • Zhang, C.-B., Wang, J., Liu, W.-L., Zhu, S.-X., Ge, H.-L., Chang, S. X., . . . Ge, Y. (2010). Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering, 36(1), 62–68. https://doi.org/10.1016/j.ecoleng.2009.09.010

Download references

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by Haq Nawaz Abbasi and Xiwu Lu. Haq Nawaz Abbasi and Waqar Ahmad were responsible for both the design and execution of the experiments. Data analysis was conducted by Haq Nawaz Abbasi and Khawar Ali Shahzad. The manuscript was written by Haq Nawaz Abbasi and Khawar Ali Shahzad. Throughout all stages of the project, Xiwu Lu provided supervision. The manuscript has been reviewed and approved by all authors.

Corresponding authors

Correspondence to Haq Nawaz Abbasi or Khawar Ali Shahzad.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, H.N., Ahmad, W., Shahzad, K.A. et al. Evaluating the potential of Abelmoschus esculentus, Solanum melongena, and Capsicum annuum spp. for nutrient and microbial reduction from wastewater in hybrid constructed wetland. Environ Monit Assess 196, 293 (2024). https://doi.org/10.1007/s10661-024-12474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12474-9

Keywords

Navigation