Skip to main content

Advertisement

Log in

Identification of hydrochemical fingerprints, quality and formation dynamics of groundwater in western high Himalayas

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Identifying hydrochemical fingerprints of groundwater is a challenge in areas with complex geological settings. This study takes the Gilgit–Baltistan, a complex geological area in west high Himalayas, Pakistan, as the study area to get insights into the hydrochemcial genesis and quality of groundwater in complex geological mountainous regions. A total of 53 samples were collected across the area to determine the hydrochemical characteristics and formation of groundwater. Results revealed groundwater there is characterized by slightly alkaline and soft fresh feature. Groundwater is dominated by the hydrochemical facies of HCO3·SO4-Ca·Mg type. The factor method yields three components (PCs) of principal component analysis, which together explain 75.71% of the total variances. The positive correlation of EC, TDS, Ca2+, SO42−, K+ in PC1, and NO3, Cl in PC2 indicate that a combination of natural and anthropogenic activities influences groundwater hydrochemistry. Water–rock interaction is the main mechanism governing the natural hydrochemistry of groundwater. The negative correlation of Cl, SO42−, Ca2+, and Na+ with NDVI attributes to inorganic salt uptake by plant roots. Groundwater chemical composition is also affected by the type of land use. Groundwater is characterized as excellent and good water quality based on the entropy-weighted water quality index assessment, and is suitable for drinking purposes except for very few samples, while aqueous fluoride would pose potential health threats to water consumers in western high Himalayas, and infants are most at risk compared to other populations. This study will help to deepen the hydrochemial formation mechanism and exploitation suitability of groundwater resources in the mountainous areas that undergone the combined actions of nature and human activities, and provide insights into the characteristics of water environmental quality in western Himalayas area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adeyemo, O. & Sogbanmu, T. O. (2020) SDG 14-life below water: Trend and trajectory in Nigeria.

  • Adimalla, N., & Venkatayogi, S. (2017). Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environmental Earth Sciences, 76, 1–10.

    Article  CAS  Google Scholar 

  • Adimalla, N., Qian, H., & Li, P. (2020). Entropy water quality index and probabilistic health risk assessment from geochemistry of groundwaters in hard rock terrain of Nanganur County, South India. Geochemistry, 80, 125544.

    Article  CAS  Google Scholar 

  • Ahmed, K., Ahmed, M., Ahmed, J., & Khan, A. (2012). Risk assessment by bacteriological evaluation of drinking water of Gilgit-Baltistan. Pakistan Journal of Zoology, 44, 427–432.

    Google Scholar 

  • Ali, K., Bajracharya, R. M., Sitaula, B. K., Raut, N., & Koirala, H. L. (2017). Morphometric analysis of Gilgit river basin in mountainous region of Gilgit-Baltistan Province, Northern Pakistan. Journal of Geoscience and Environment Protection, 5, 70.

    Article  Google Scholar 

  • Ambiga, K., & AnnaDurai, R. (2013). Assessment of groundwater pollution potential in and around Ranipet area, Vellore district, Tamilnadu. The International Journal of Engineering and Science (IJES), 2, 263–268.

    Google Scholar 

  • Baloch, M. Y. J., Talpur, S. A., Talpur, H. A., Iqbal, J., Mangi, S. H., & Memon, S. (2020). Effects of arsenic toxicity on the environment and its remediation techniques: A review. Journal of Water and Environment Technology, 18, 275–289.

    Article  Google Scholar 

  • Bilal, A., Mughal, M. S., Janjuhah, H. T., Ali, J., Niaz, A., Kontakiotis, G., Antonarakou, A., Usman, M., Hussain, S. A., & Yang, R. (2022). Petrography and provenance of the Sub-Himalayan Kuldana Formation: Implications for tectonic setting and Palaeoclimatic conditions. Minerals, 12, 794.

    Article  CAS  ADS  Google Scholar 

  • Chen, S., Liu, F., Zhang, Z., Zhang, Q., & Wang, W. (2021). Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geology, 4, 455–462.

    Article  Google Scholar 

  • Cotruvo, J. A. (2017). 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition. Journal-American Water Works Association, 109, 44–51.

    Article  Google Scholar 

  • Dam, P. (2012). Dry season vegetable farming in the floodplains of river Katsina-Ala in Katsina-Ala town of Benue state, Nigeria. Journal of Environmental Issues and Agriculture in Developing Countries, 4, 18–23.

    Google Scholar 

  • Emberson, R., Galy, A., & Hovius, N. (2018). Weathering of reactive mineral phases in landslides acts as a source of carbon dioxide in mountain belts. Journal of Geophysical Research: Earth Surface, 123, 2695–2713.

    Article  CAS  ADS  Google Scholar 

  • Fagbote, E., Olanipekun, E., & Uyi, H. (2014). Water quality index of the ground water of bitumen deposit impacted farm settlements using entropy weighted method. International Journal of Environmental Science and Technology, 11, 127–138.

    Article  CAS  Google Scholar 

  • Fatima, S. U., Khan, M. A., Siddiqui, F., Mahmood, N., Salman, N., Alamgir, A., & Shaukat, S. S. (2022). Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environmental Monitoring and Assessment, 194, 151.

    Article  CAS  PubMed  Google Scholar 

  • Gaetani, M. (2016). Blank on the geological map. Rendiconti Lincei, 27, 181–195.

    Article  Google Scholar 

  • Gaikwad, G., Deshpande, S., Aher, K., & Dasarwar, V. (2019). Hydrogeochemical investigation and qualitative assessment in jogeshwari industrial area of Aurangabad. Maharashtra.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Glina, B., Bogacz, A., Pikus, H. & Pawluczuk, J. (2016) The impact of anthropopreassure and weather conditions on the mineral nitrogen content in the organic soils from Fen Peatlands (Stołowe Mountains, Sw Poland). Polish Journal of Soil Science, 49.

  • Goswami, R., Neog, N., & Thakur, R. (2022). Hydrogeochemical analysis of groundwater quality for drinking and irrigation with elevated arsenic and potential impact on agro-ecosystem in the upper Brahmaputra plain, India. Environmental Science and Pollution Research, 29, 68735–68756.

    Article  CAS  PubMed  Google Scholar 

  • Gulgundi, M. S., & Shetty, A. (2018). Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques. Applied Water Science, 8, 1–15.

    Article  CAS  Google Scholar 

  • Haji, M., Wang, D., Li, L., Qin, D., & Guo, Y. (2018). Geochemical evolution of fluoride and implication for F enrichment in groundwater: Example from the Bilate River Basin of Southern Main Ethiopian Rift. Water, 10, 1799.

    Article  CAS  ADS  Google Scholar 

  • Hao, Q., Li, Y., Xiao, Y., Yang, H., Zhang, Y., Wang, L., Liu, K., Liu, G., Wang, J., Hu, W., & Liu, W. (2023). Hydrogeochemical fingerprint, driving forces and spatial availability of groundwater in a coastal plain (p. 51). Urban Climate: Southeast China.

    Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of the Water Pollution Control Federation, 37, 300–306.

    Google Scholar 

  • Hussain, A., Ullah, K., Perwez, U. & Shahid, M. (2018). The long-term forecast of Gilgit Baltistan (GB)’s electricity demand. In 2018 international Conference on power generation systems and renewable energy technologies (PGSRET), 1–5. IEEE.

  • Ibrahim, H., Yaseen, Z. M., Scholz, M., Ali, M., Gad, M., Elsayed, S., Khadr, M., Hussein, H., Ibrahim, H. H., & Eid, M. H. (2023). Evaluation and prediction of groundwater quality for irrigation using an integrated water quality indices, machine learning models and GIS approaches: A representative case study. Water, 15, 694.

    Article  CAS  Google Scholar 

  • Iqbal, J., Su, C., Rashid, A., Yang, N., Baloch, M. Y. J., Talpur, S. A., Ullah, Z., Rahman, G., Rahman, N. U., & Sajjad, M. M. (2021). Hydrogeochemical assessment of groundwater and suitability analysis for domestic and agricultural utility in Southern Punjab, Pakistan. Water, 13, 3589.

    Article  CAS  Google Scholar 

  • Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. (2005). Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20, 221–228.

    Article  CAS  ADS  Google Scholar 

  • Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G., Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., & Wada, Y. (2017). Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 10, 425–429.

    Article  CAS  ADS  Google Scholar 

  • Jiang, W., Meng, L., Liu, F., Sheng, Y., Chen, S., Yang, J., Mao, H., Zhang, J., Zhang, Z., Ning, H. (2023). Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self‑organizing map (SOM). Environmental Geochemistry and Health, 45, 6353–6370.

  • Kalpana, L., Brindha, K., & Elango, L. (2019). FIMAR: A new Fluoride Index to mitigate geogenic contamination by Managed Aquifer Recharge. Chemosphere, 220, 381–390.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kanagaraj, G., & Elango, L. (2016). Hydrogeochemical processes and impact of tanning industries on groundwater quality in Ambur, Vellore district, Tamil Nadu, India. Environmental Science and Pollution Research, 23, 24364–24383.

    Article  CAS  PubMed  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Deepali, M., Subramani, T., Bellows, B. C., & Li, P. (2021). Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area (Tiruppur) of Southern India. Environmental Science and Pollution Research, 28, 18523–18538.

    Article  CAS  PubMed  Google Scholar 

  • Kazmi, A. H. & Jan, M. Q. (1997) Geology and tectonics of Pakistan. (No Title).

  • Khan, F., Krishnaraj, S., Raja, P., Selvaraj, G., & Cheelil, R. (2021). Impact of hydrogeochemical processes and its evolution in controlling groundwater chemistry along the east coast of Tamil Nadu and Puducherry, India. Environmental Science and Pollution Research, 28, 18567–18588.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2016). Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arabian Journal of Geosciences, 9, 1–17.

    Article  Google Scholar 

  • Li, P., Wu, J., Qian, H., Zhang, Y., Yang, N., Jing, L., & Yu, P. (2016). Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Exposure and Health, 8, 331–348.

    Article  CAS  Google Scholar 

  • Li, Z., Hu, F., Zhou, W., Zhao, Z., Wang, G., & Shi, Z. (2017). Hydrogeochemical characteristics and controlling factors of confined water in Yinchuan. Hydrogeology and Engineering Geology, 44, 31–39.

    CAS  Google Scholar 

  • Li, P., He, S., He, X., & Tian, R. (2018). Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, Northwest China. Exposure and Health, 10, 241–258.

    Article  CAS  Google Scholar 

  • Liu, T., Gao, X., Zhang, X., & Li, C. (2020). Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: A case study in the Yuncheng Basin, China. Acta Geochimica, 39, 216–225.

    Article  CAS  Google Scholar 

  • Liu, J., Peng, Y., Li, C., Gao, Z., & Chen, S. (2021). An investigation into the hydrochemistry, quality and risk to human health of groundwater in the central region of Shandong Province, North China. Journal of Cleaner Production, 282, 125416.

    Article  CAS  Google Scholar 

  • Liu, R., Zhu, H., Liu, F., Dong, Y., & Refaey, M.E.-W. (2021). Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau: A case study of Dali County, Shaanxi Province, China. China Geology, 4, 487–497.

    Article  CAS  Google Scholar 

  • Liu, M., Xiao, C., Liang, X., & Wei, H. (2022). Response of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: A case study of Shuangliao City, Northeast China. Ecotoxicology and Environmental Safety, 236, 113473.

    Article  CAS  PubMed  Google Scholar 

  • Malkani, M. S., Mahmood, Z., Usmani, N. A., & Siraj, M. (2017). Mineral resources of Azad Kashmir and Gilgit Baltistan, Pakistan. Geological Survey of Pakistan, Information Release, 997, 1–40.

    Google Scholar 

  • Mayayo, M., Bauluz, B., López-Galindo, A., & González-López, J. (1996). Mineralogy and geochemistry of the carbonates in the Calatayud Basin (Zaragoza, Spain). Chemical Geology, 130, 123–136.

    Article  CAS  ADS  Google Scholar 

  • Msilimba, G., & Wanda, E. M. (2013). Microbial and geochemical quality of shallow well water in high-density areas in Mzuzu City in Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 66, 173–180.

    Article  ADS  Google Scholar 

  • Muhammad, S., & Usman, Q. A. (2022). Heavy metal contamination in water of Indus River and its tributaries, Northern Pakistan: Evaluation for potential risk and source apportionment. Toxin Reviews, 41, 380–388.

    Article  CAS  Google Scholar 

  • Nandakumaran, P., & Balakrishnan, K. (2020). Groundwater quality variations in Precambrian hard rock aquifers: A case study from Kerala, India. Applied Water Science, 10, 2.

    Article  ADS  Google Scholar 

  • Nandimandalam, J. R. (2012). Evaluation of hydrogeochemical processes in the Pleistocene aquifers of middle Ganga Plain, Uttar Pradesh, India. Environmental Earth Sciences, 65, 1291–1308.

    Article  CAS  ADS  Google Scholar 

  • Neisi, A., Mirzabeygi, M., Zeyduni, G., Hamzezadeh, A., Jalili, D., Abbasnia, A., Yousefi, M., & Khodadadi, R. (2018). Data on fluoride concentration levels in cold and warm season in City area of Sistan and Baluchistan Province, Iran. Data in Brief, 18, 713–718.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nogueira, G., Stigter, T., Zhou, Y., Mussa, F., & Juizo, D. (2019). Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Science of the Total Environment, 661, 723–736.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nordstrom, D. K. (2022). Fluoride in thermal and non-thermal groundwater: Insights from geochemical modeling. Science of the Total Environment, 824, 153606.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nsabimana, A., & Li, P. (2023). Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a novel industrial water quality index (IndWQI) in the Guanzhong Basin (p. 83). Geochemistry: China.

    Google Scholar 

  • Nyambar, I. N. A. & Mohan Viswanathan, P. (2023). Assessment on urban lakes along the coastal region of Miri, NW Borneo: Implication for hydrochemistry, water quality, and pollution risk. Environmental Science and Pollution Research, 1–23.

  • Payton, E., Khubchandani, J., Thompson, A., & Price, J. H. (2017). Parents’ expectations of high schools in firearm violence prevention. Journal of Community Health, 42, 1118–1126.

    Article  PubMed  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25, 914–928.

    Article  ADS  Google Scholar 

  • Pisciotta, A., Tiwari, A. K., & De Maio, M. (2019). An integrated multivariate statistical analysis and hydrogeochemical approaches to identify the major factors governing the chemistry of water resources in a mountain region of northwest Italy. Carbonates and Evaporites, 34, 955–973.

    Article  CAS  Google Scholar 

  • Qin, X., Ma, H., Zhang, X., Fan, Q., Cheng, H., Li, Y., Miao, W., Hai, Q., & Shi, H. (2017). Hydrochemical characteristics of salt spring and potassium-prospecting in Changdu Basin. Journal of Salt Lake Research, 25, 28–39.

    CAS  Google Scholar 

  • Rabeiy, R. E. (2018). Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research, 25, 30808–30817.

    Article  PubMed  Google Scholar 

  • Rajkonwar, M., Goswami, U., Bezbaruah, D., & Goswami, K. (2023). Groundwater chemistry of the river terrace springs along Himalayan Foothills in and around Pasighat, Arunachal Pradesh, India. Journal of the Geological Society of India, 99, 875–880.

    Article  CAS  Google Scholar 

  • Rao, N. S. (2014). Spatial control of groundwater contamination, using principal component analysis. Journal of Earth System Science, 123, 715–728.

    Article  CAS  ADS  Google Scholar 

  • Rashid, A., Khattak, S. A., Ali, L., Zaib, M., Jehan, S., Ayub, M., & Ullah, S. (2019). Geochemical profile and source identification of surface and groundwater pollution of District Chitral, Northern Pakistan. Microchemical Journal, 145, 1058–1065.

    Article  CAS  Google Scholar 

  • Rashid, M. U., Ahmed, W., Islam, I., Petrounias, P., Giannakopoulou, P. P., & Koukouzas, N. (2023). Impact of Climate change on the stability of the Miacher Slope, Upper Hunza, Gilgit Baltistan, Pakistan. Climate, 11, 102.

    Article  Google Scholar 

  • Refat Nasher, N., & Humayan Ahmed, M. (2021). Groundwater geochemistry and hydrogeochemical processes in the Lower Ganges-Brahmaputra-Meghna River Basin areas, Bangladesh. Journal of Asian Earth Sciences: X, 6, 100062.

    Google Scholar 

  • Rehman Qaisar, F. U., Zhang, F., Pant, R. R., Wang, G., Khan, S., & Zeng, C. (2018). Spatial variation, source identification, and quality assessment of surface water geochemical composition in the Indus River Basin, Pakistan. Environmental Science and Pollution Research, 25, 12749–12763.

    Article  CAS  PubMed  Google Scholar 

  • Ren, X., Li, P., He, X., Su, F., & Elumalai, V. (2021). Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Archives of Environmental Contamination and Toxicology, 80, 74–91.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, S., Chizari, M., Sadighi, H., & Bijani, M. (2018). Assessment of agricultural groundwater users in Iran: A cultural environmental bias. Hydrogeology Journal, 26, 285–295.

    Article  ADS  Google Scholar 

  • Salufu Samuel, O. & Akhirevbulu, O. E. (2015). Correlation for predicting tds and elecrical conductance of groundwater: Using electrical resistivity method. Network (ANN), 2.

  • Sefie, A., Aris, A. Z., Ramli, M. F., Narany, T. S., Shamsuddin, M. K. N., Saadudin, S. B., & Zali, M. A. (2018). Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin, Kelantan, Malaysia. Environmental Earth Sciences, 77, 1–15.

    Article  CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  Google Scholar 

  • Sharma, M., & Kumar, M. (2020). Sulphate contamination in groundwater and its remediation: An overview. Environmental Monitoring and Assessment, 192, 1–10.

    Article  Google Scholar 

  • Sharma, M., Kumar, M., Malik, D., Singh, S., Patre, A., Prasad, B., Sharma, B., Saini, S., Shukla, A., & Das, P. (2022). Assessment of groundwater quality and its controlling processes in Bemetara District of Chhattisgarh State, India. Applied Water Science, 12, 102.

    Article  ADS  Google Scholar 

  • Sonkamble, S., Sahya, A., Mondal, N., & Harikumar, P. (2012). Appraisal and evolution of hydrochemical processes from proximity basalt and granite areas of Deccan Volcanic Province (DVP) in India. Journal of Hydrology, 438, 181–193.

    Article  ADS  Google Scholar 

  • Stallard, R., & Edmond, J. (1983). Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Su, C., Wang, Y., Xie, X., & Li, J. (2013). Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China. Journal of Geochemical Exploration, 135, 79–92.

    Article  CAS  Google Scholar 

  • Su, H., Wang, J., & Liu, J. (2019). Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China. Enviromental Pollution, 252, 1154–1162.

    Article  CAS  Google Scholar 

  • Su, H., Geng, D., Zhang, Z., Luo, Q., & Wang, J. (2020). Assessment of the impact of natural and anthropogenic activities on the groundwater chemistry in Baotou City (North China) using geochemical equilibrium and multivariate statistical techniques. Environmental Science and Pollution Research, 27, 27651–27662.

    Article  CAS  PubMed  Google Scholar 

  • Su, H., Li, H., Chen, H., Li, Z. & Zhang, S. (2023). Source identification and potential health risks of fluoride and nitrate in groundwater of a typical alluvial plain. Science of the Total Enviroment, 904.

  • Subba Rao, N. (2018). Groundwater quality from a part of Prakasam District, Andhra Pradesh, India. Applied Water Science, 8, 30.

    Article  ADS  Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137.

    Article  CAS  PubMed  Google Scholar 

  • Sudheer Kumar, M., Dhakate, R., Yadagiri, G., & Srinivasa Reddy, K. (2017). Principal component and multivariate statistical approach for evaluation of hydrochemical characterization of fluoride-rich groundwater of Shaslar Vagu watershed, Nalgonda District, India. Arabian Journal of Geosciences, 10, 83.

    Article  Google Scholar 

  • Tahirkheli, R. A. K. (1982). Geology of the Himalaya, Karakoram and Hindukush in Pakistan.

  • Tariq, A., Beni, L. H., Ali, S., Adnan, S., & Hatamleh, W. A. (2023). An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge. Groundwater for Sustainable Development, 23, 100998.

    Article  Google Scholar 

  • Taufiq, A., Effendi, A. J., Iskandar, I., Hosono, T., & Hutasoit, L. M. (2019). Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters. Water Research, 148, 292–305.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, F., Muhammad, S., & Ali, W. (2022). Radon concentration and potential risks assessment through hot springs water consumption in the Gilgit and Chitral, Northern Pakistan. Chemosphere, 287, 132323.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Li, R., Wu, X., Yan, Y., Wei, C., Luo, M., Xiao, Y., & Zhang, Y. (2023). Evaluation of groundwater quality for drinking and irrigation purposes using GIS-based IWQI, EWQI and HHR Model. Water, 15, 2233.

    Article  Google Scholar 

  • Wang, S., Xie, Z., Wang, F., Zhang, Y., Wang, W., Liu, K., Qi, Z., Zhao, F., Zhang, G. & Xiao, Y. (2022) Geochemical characteristics and quality appraisal of groundwater from Huatugou of the Qaidam basin on the Tibetan plateau. Frontiers in Earth Science, 10.

  • Wolf, S. O. (2020). From Kashmir to Ladakh: the rationale behind Beijing’s border intrusions into India. In Research Report, Brussels: South Asia Democratic Forum (SADF).

  • Xiao, Y., Hao, Q., Zhang, Y., Zhu, Y., Yin, S., Qin, L., & Li, X. (2022). Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Science of the Total Environment, 802, 149909.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xiao, Y., Liu, K., Hao, Q., Li, Y., Xiao, D., & Zhang, Y. (2022). Occurrence, controlling factors and health hazards of fluoride-enriched groundwater in the lower flood plain of Yellow River, Northern China. Exposure and Health, 14, 345–358.

    Article  CAS  Google Scholar 

  • Xiao, Y., Liu, K., Hao, Q., Xiao, D., Zhu, Y., Yin, S., & Zhang, Y. (2022). Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena, 212, 106020.

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Ma, H., Wang, L., & Martín, J. D. (2016). Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environmental Pollution, 218, 879–888.

    Article  CAS  PubMed  Google Scholar 

  • Yang, N., Su, C., Zeng, H., Li, Z., Liu, W., & Kang, W. (2020). Evolutional processes of groundwater in Xinglong County based on hydrochemistry and hydrogen and oxygen isotopes. Hydrogeology and Engineering Geology, 47, 154–162.

    CAS  Google Scholar 

  • Yang, H., Xiao, Y., Zhang, Y., Wang, L., Wang, J., Hu, W., Liu, G., Liu, F., Hao, Q., Wang, C., & Xu, X. (2024). Lithology controls on the mixing behavior and discharge regime of thermal groundwater in the Bogexi geothermal field on Tibetan Plateau. Journal of Hydrology, 628, 130523.

    Article  CAS  Google Scholar 

  • Yang, Y., Li, P., Elumalai, V., Ning, J., Xu, F. & Mu, D. (2022). Groundwater quality assessment using EWQI with updated water quality classification criteria: A case study in and around Zhouzhi County, Guanzhong Basin (China). Exposure and Health, 1–16.

  • Yang, H., Xiao, Y., Hao, Q., Wang, L., Zhang, Y., Liu, K., Zhu, Y., Liu, G., Yin, S. & Xie, Z. (2023) Geochemical characteristics, mechanisms and suitability for sustainable municipal and agricultural water supply of confined groundwater in central North China Plain. Urban Climate, 49.

  • Yenehun, A., Dessie, M., Nigate, F., Belay, A. S., Azeze, M., Van Camp, M., Taye, D. F., Kidane, D., Adgo, E., & Nyssen, J. (2022). Spatial and temporal simulation of groundwater recharge and cross-validation with point estimations in volcanic aquifers with variable topography. Journal of Hydrology: Regional Studies, 42, 101142.

    Google Scholar 

  • Yin, S., Xiao, Y., Han, P., Hao, Q., Gu, X., Men, B. & Huang, L. (2020). Investigation of groundwater contamination and health implications in a typical semiarid basin of North China. Water, 12.

  • Yu, Z., Wu, G., Li, F., Huang, J., Xiao, X., & Liu, K. (2021). Small-catchment perspective on chemical weathering and its controlling factors in the Nam Co basin, central Tibetan Plateau. Journal of Hydrology, 598, 126315.

    Article  CAS  Google Scholar 

  • Zhai, Y., Lei, Y., Wu, J., Teng, Y., Wang, J., Zhao, X., & Pan, X. (2017). Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environmental Science Pollution Research, 24, 3640–3653.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Wu, J., & Xu, B. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77, 1–12.

    Article  ADS  Google Scholar 

  • Zhang, Y., He, Z., Tian, H., Huang, X., Zhang, Z., Liu, Y., Xiao, Y., & Li, R. (2021). Hydrochemistry appraisal, quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin, southwestern China. Environmental Earth Sciences, 80, 576.

    Article  CAS  ADS  Google Scholar 

  • Zhang, Y., Xiao, Y., Yang, H., Wang, S., Wang, L., Qi, Z., Han, J., Hao, Q., Hu, W., Wang, J. (2024). Hydrogeochemical and isotopic insights into the genesis and mixing behaviors of geothermal water in a faults-controlled geothermal field on Tibetan Plateau. Journal of Cleaner Production, 442, 140980.

  • Zhao, W., Lin, Y., Zhou, P., Wang, G., Dang, X., & Gu, X. (2021). Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4, 377–388.

    Article  CAS  Google Scholar 

  • Zhou, J., Han, F., Pang, X., Luo, C., & Yan, J. (2010). Preliminary Investigation of Hajiang Salt Pond and Kuhai Lake in Yellow River Source Area. Journal of Salt Lake Research, 18, 18–22.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the editor and anonymous reviewers whose insightful comments were very helpful in improving the paper.

Funding

This research was funded by the Sichuan Science and Technology Program (2022NSFSC1084); the Applied Basic Research Project of Science and Technology Program of Qinghai Province (2024-ZJ-771); the MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) (2023–004); Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes (SK202305KF01); the National Natural Science Foundation of China (42007183); the Student Research Training Program of Southwest Jiaotong University (202310613077); the Fundamental Research Funds for the Central Universities (2682022ZTPY002, 2682022ZTPY088).

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Haziq Khan: field investigation, data curation, formal analysis, writing—original draft. Yong Xiao: conceptualization, formal analysis, writing—reviewing and editing. Hongjie Yang: data curation, methodology, formal analysis. Liwei Wang: data curation, formal analysis. Yuqing Zhang: data curation, methodology, formal analysis. Wenxu Hu: methodology, data curation, formal analysis. Jie Wang: data curation, methodology, formal analysis. Gongxi Liu: data curation, methodology, formal analysis. Weiting Liu: methodology, data curation.

Corresponding author

Correspondence to Yong Xiao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.H., Xiao, Y., Yang, H. et al. Identification of hydrochemical fingerprints, quality and formation dynamics of groundwater in western high Himalayas. Environ Monit Assess 196, 305 (2024). https://doi.org/10.1007/s10661-024-12466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12466-9

Keywords

Navigation