Skip to main content

Advertisement

Log in

Multi-datasets to monitor and assess meteorological and hydrological droughts in a typical basin of the Brazilian semiarid region

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study analyzed the meteorological and hydrological droughts in a typical basin of the Brazilian semiarid region from 1994 to 2016. In recent decades, this region has faced prolonged and severe droughts, leading to marked reductions in agricultural productivity and significant challenges to food security and water availability. The datasets employed included a digital elevation model, land use and cover data, soil characteristics, climatic data (temperature, wind speed, solar radiation, humidity, and precipitation), runoff data, images from the MODIS/TERRA and AQUA sensors (MOD09A1 and MODY09A1 products), and soil water content. A variety of methods and products were used to study these droughts: the meteorological drought was analyzed using the Standardized Precipitation Index (SPI) derived from observed precipitation data, while the hydrological drought was assessed using the Standardized Soil Index (SSI), the Nonparametric Multivariate Standardized Drought Index (NMSDI), and the Parametric Multivariate Standardized Drought Index (PMSDI). These indices were determined using water balance components, including streamflow and soil water content, from the Soil Water Assessment Tool (SWAT) model, and evapotranspiration data from the Surface Energy Balance Algorithm for Land (SEBAL). The findings indicate that the methodology effectively identified variations in water dynamics and drought periods in a headwater basin within Brazil's semiarid region, suggesting potential applicability in other semiarid areas. This study provides essential insights for water resource management and resilience building in the face of adverse climatic events, offering a valuable guide for decision-making processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333, 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  • AghaKouchak, A. (2014). A baseline probabilistic drought forecasting framework using Standardized Soil Moisture Index: application to the 2012 United States drought. Hydrology and Earth System Sciences, 11, 1947−1966. https://doi:10.5194/hessd-11-1947-2014

  • Al-Qubati, A., Zhang, L., & Pyarali, K. (2023). Climatic drought impacts on key ecosystem services of a low mountain region in Germany. Environmental Monitoring and Assessment, 195, 800. https://doi.org/10.1007/s10661-023-11397-1

    Article  Google Scholar 

  • Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Van Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K. (2012). SWAT: model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment – part I: Model development. Journal of American Water Resources Association, 34, 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Barbosa, H. A., Huete, A., & Baethgen, W. (2006). A 20-year study of NDVI variability over the northeast region of Brazil. Journal of Arid Environments, 67, 288–307. https://doi.org/10.1016/j.jaridenv.2006.02.022

    Article  Google Scholar 

  • Barbosa, H. A., & Kumar, T. V. L. (2016). Influence of rainfall variability on the vegetation dynamics over northeastern Brazil. Journal of Arid Environments, 124, 377–387. https://doi.org/10.1016/j.jaridenv.2015.08.015

    Article  Google Scholar 

  • Barbosa, H. A., Lakshmi Kumar, T., Paredes, F., Elliott, S., & Ayuga, J. G. (2019a). Assessment of caatinga response to drought using meteosat-SEVIRI normalized difference vegetation index (2008–2016). ISPRS Journal of Photogrammetry and Remote Sensing, 148, 235–252. https://doi.org/10.1016/j.isprsjprs.2018.12.014

    Article  Google Scholar 

  • Barbosa, L. R., Lira, N. B., Coelho, V. H. R., Silans, A. M. B. P., Gadelha, A. N., & Almeida, C. N. (2019b). Stability of soil moisture patterns retrieved at different temporal resolutions in a tropical watershed. Revista Brasileira De Ciência Do Solo, 43, 1–21. https://doi.org/10.1590/18069657rbcs20180236

    Article  CAS  Google Scholar 

  • Bastiaanssen, W. G. M. (1995). Regionalization of surface flux densities and moisture indicators in composite terrain. Wageningen Agricultural University, 1995, Wageningen, 273 PhD Dissertation.

  • Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213, 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4

    Article  Google Scholar 

  • Brasil Neto, R. M., & Santos, C. A. G. (2024). The NIFT index: A new approach to assessing meteorological drought exposure. Journal of Hydrology, 632, 130857. https://doi.org/10.1016/j.jhydrol.2024.130857

  • Brasil Neto, R. M., Santos, C. A. G., Nascimento, T. V. M., Silva, R. M., & Santos, C. A. C. (2020). Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: A statistical analysis. Remote Sensing, 12, 2184. https://doi.org/10.3390/rs12142184

  • Brasil Neto, R. M., Santos, C. A. G., Silva, J. F. C. B. C., Silva, R. M., Santos, C. A. C., & Mishra, M. (2021). Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: A trend analysis. Scientific Reports, 11, 286–296. https://doi.org/10.1038/s41598-020-80026-5

  • Brasil Neto, R. M., Santos, C. A. G., Silva, R. M., & Costa dos Santos, C. A. (2022). Evaluation of TRMM satellite dataset for monitoring meteorological drought in northeastern Brazil. Hydrological Sciences Journal, 67, 2100–2120. https://doi.org/10.1080/02626667.2022.2130333

  • Brito, C. S., Silva, R. M., Santos, C. A. G., Brasil Neto, R. M., & Coelho, V. H. R. (2021a). Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmospheric Research, 250, 105380. https://doi.org/10.1016/j.atmosres.2020.105380

  • Brito, C. S., Silva, R. M., Santos, C. A. G., Brasil Neto, R. M., & Coelho, V. H. R. (2021b). Long-term basin-scale comparison of two high-resolution satellite-based remote sensing datasets for assessing rainfall and erosivity in a basin in the Brazilian semiarid region. Theoretical and Applied Climatology, 147, 1049–1064. https://doi.org/10.1007/s00704-021-03857-w

  • Builes-Jaramillo, A., Valencia, J., & Salas, H. D. (2023). The influence of the El Niño-Southern Oscillation phase transitions over the northern South America hydroclimate. Atmospheric Research, 290, 106786. https://doi.org/10.1016/j.atmosres.2023.106786

    Article  Google Scholar 

  • Costa, L. C., Cunha, A. P. M. A., Anderson, L. O., & Cunningham, C. (2021). New approach for drought assessment: A case study in the northern region of Minas Gerais. International Journal of Disaster Risk Reduction, 53, 102019. https://doi.org/10.1016/j.ijdrr.2020.102019

  • Cunha, A. P. M. A., Alvalá, R. C., Nobre, C. A., & Carvalho, M. A. (2015). Monitoring vegetative drought dynamics in the Brazilian Semiarid Region. Agricultural and Forest Meteorology, 214–215, 494–505. https://doi.org/10.1016/j.agrformet.2015.09.010

    Article  Google Scholar 

  • Cunha, A. P. M. A., Barros, S. S., Rossato, L., Alvalá, R. C., Carvalho, M. A., Zeri, L. M. M., Cunningham, C., Maciel, A. P. R., Andrade, E. S., & Vieira, R. M. S. P. (2017). Assessing indicator for drought impacts monitoring over pasturelands in the Brazilian Semiarid Region. Brazilian Journal of Cartography, 69, 65–79.

    Google Scholar 

  • Cunha, E. R., Santos, C. A. G., Silva, R. M., Panachuki, E., Oliveira, P. T. S., Oliveira, N. S., & Falcão, K. S. (2022). Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Science of the Total Environment, 818, 151811. https://doi.org/10.1016/j.scitotenv.2021.151811

    Article  CAS  Google Scholar 

  • Da Silva, R. M., Silva, J. F. C. B. C., Santos, C. A. G., Silva, A. M., & Brasil Neto, R. M. (2020a). Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba - Brazil. Natural Hazards, 102, 829–849. https://doi.org/10.1007/s11069-020-03926-9

  • Dantas, J. C., Silva, R. M., & Santos, C. A. G. (2020). Drought impacts, social organization and public policies in northeastern Brazil: A case study of the Upper Paraíba River basin. Environmental Monitoring and Assessment, 192, 317202. https://doi.org/10.1007/s10661-020-8219-0

    Article  Google Scholar 

  • De Medeiros, I. C., Da Costa Silva, J. F. C. B., Silva, R. M., & Santos, C. A. G. (2019). Run-off−erosion modelling and water balance in the epitácio pessoa dam river basin, Paraíba State in Brazil. International Journal of Environmental Science and Technology, 16, 3035–3048. https://doi.org/10.1007/s13762-018-1940-3

    Article  Google Scholar 

  • Edwards, E. C., McKee, T. B. (1997). Characteristics of 20th Century drought in the United States at multiple time scales. Climatology Rep. 97−2, Atmospheric Science Paper 634, Department of Atmospheric Science (p. 155), Colorado State University, Fort Collins, CO.

  • Fenta, A.A., Tsunekawa, A., Haregeweyn, N., Yasuda, H., Tsubo, M., Borrelli, P., Kawai, T., Belay, A.S., Ebabu, K., Berihun, M.L., Sultan, D., Setargie, T.A., Elnashar, A., Panagos, P. (2023). Improving satellite-based global rainfall erosivity estimates through merging with gauge data. Journal of Hydrology, 620(Part B), 129555. https://doi.org/10.1016/j.jhydrol.2023.129555

  • Ferreira da Silva, G. J., De Oliveira, N. M., Santos, C. A. G., & Da Silva, R. M. (2020). Spatiotemporal variability of vegetation due to drought dynamics (2012–2017): A case study of the Upper Paraíba River basin, Brazil. Natural Hazards, 102, 939–964. https://doi.org/10.1007/s11069-020-03940-x

    Article  Google Scholar 

  • Giovannettone, J., Paredes-Trejo, F., Barbosa, H. A. D., Santos, C. A. C., & Kumar Lakshmi, T. V. (2020). Characterization of links between hydro-climate indices and long-term precipitation in Brazil using correlation analysis. International Journal of Climatology, 40, 5527–5541. https://doi.org/10.1002/joc.6533

    Article  Google Scholar 

  • Government of Paraíba. (2022). Plano Estadual de Recursos Hídricos da Paraíba: relatório executivo. Agência Executiva de Gestão das Águas do Estado da Paraíba. Available at: http://www.aesa.pb.gov.br/aesa-website/wp-content/uploads/2022/12/Relat%C3%B3rio-Executivo-Final-do-PERH.pdf.  Accessed on: 21 Feb 2024

  • Gu, L., Chen, J., Yin, J., Xu, C.-Y., & Chen, H. (2020). Drought hazard transferability from meteorological to hydrological propagation. Journal of Hydrology, 585, 124761. https://doi.org/10.1016/j.jhydrol.2020.124761

    Article  Google Scholar 

  • Hao, Z., & AghaKouchak, A. (2014). A nonparametric multivariate multi-index drought monitoring framework. Journal of Hydrometeorology, 15, 89–101. https://doi.org/10.1175/JHM-D-12-0160.1

    Article  Google Scholar 

  • Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated drought monitoring and prediction system. Scientific Data, 1, 140001. https://doi.org/10.1038/sdata.2014.1

    Article  Google Scholar 

  • Havrylenko, S. B., Bodoque, J. M., Srinivasan, R., Zucarelli, G. V., & Mercuri, P. (2016). Assessment of the soil water content in the Pampas region using SWAT. Catena, 137, 298–309. https://doi.org/10.1016/j.catena.2015.10.001

    Article  Google Scholar 

  • Heidari, S., Shamsipour, A., Kakroodi, A.A., Bazgeer, S. (2023). Monitoring land cover changes and droughts using statistical analysis and multi-sensor remote sensing data. Environmental Monitoring and Assessment, 195, 618. https://doi.org/10.1007/s10661-023-11195-9

  • INMET – Instituto Nacional de Meteorologia. (2020). Banco de Dados Meteorológicos para Ensino e Pesquisa. Available at: <http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>. Accessed on: 22 Oct 2020

  • Kang, H., & Sridhar, V. (2017). Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia. Journal of Hydrology: Regional Studies, 12, 253–272. https://doi.org/10.1016/j.ejrh.2017.06.003

    Article  CAS  Google Scholar 

  • Lima, C. E. S., Costa, V. S. O., Galvincio, J. D., Silva, R. M., & Santos, C. A. G. (2021). Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region. Agricultural Water Management, 250, 106863. https://doi.org/10.1016/j.agwat.2021.106863

    Article  Google Scholar 

  • Liu, Q., Zhang, S., Zhang, H., Bai, Y., & Zhang, J. (2020). Monitoring drought using composite drought indices based on remote sensing. Science of the Total Environment, 711, 134585. https://doi.org/10.1016/j.scitotenv.2019.134585

    Article  CAS  Google Scholar 

  • Marengo, J. A., Alvez, L. A. M., Alvalá, R. C. S., Cunha, A. P., Brito, S., & Moraes, O. L. L. (2018). Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. Anais Da Academia Brasileira De Ciências, 90(2), 197–1985. https://doi.org/10.1590/0001-3765201720170206

    Article  Google Scholar 

  • Marengo, J. A., Cunha, A. P. M. A., Nobre, C. A., Ribeiro Neto, G. G., Magalhaes, A. R., Torres, R. R., Sampaio, G., Alexandre, F., Alves, L. M., Cuartas, L. A., Deusdará, K. R. L., & Álvala, R. C. S. (2020). Assessing drought in the drylands of Northeast Brazil under regional warming exceeding 4 °C. Natural Hazards, 102, 1–26. https://doi.org/10.1007/s11069-020-04097-3

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology. 17-22 January 1993. Anaheim, California. American Meteorological Society, 605 Boston, MA.

  • Meira, M. A., Freitas, E. S., Coelho, V. H. R., Tomasella, J., Fowler, H. J., Ramos Filho, G. M., Silva, A. L., Almeida, C. N. (2022). Quality control procedures for sub-hourly rainfall data: an investigation in different spatio-temporal scales in Brazil. Journal of Hydrology, 613(Part A), 128358. https://doi.org/10.1016/j.jhydrol.2022.128358

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of American Society Agriculture and Biology Engineering, 50(3):885–900. https://doi.org/10.13031/2013.23153

  • Oliveira, M. L., dos Santos, C. A. C., Santos, F. A. C., Oliveira, G., Santos, C. A. G., Bezerra, U. A., Cunha, J. E. B. L., & Silva, R. M. (2023). Evaluation of water and carbon estimation models in the Caatinga biome based on remote sensing. Forests, 14, 828. https://doi.org/10.3390/f14040828

    Article  Google Scholar 

  • Oliveira, N. M., Silva, R. M., Brasil Neto, R. M., Santos, C. A. G., & Vianna, P. C. G. (2022). Spatiotemporal patterns of agricultural and meteorological droughts using SPI and MODIS-based estimates over a Brazilian semiarid region: Study case of Upper Paraíba River basin. Geocarto International, 37, 11590–11613. https://doi.org/10.1080/10106049.2022.2060315

  • Paredes-Trejo, F., Barbosa, H. A., Daldegan, G. A., Teich, I., García, C. L., Kumar Lakshmi, T. V., & Buriti, C. O. (2023). Impact of drought on land productivity and degradation in the Brazilian Semiarid Region. Land, 12(5), 954. https://doi.org/10.3390/land12050954

    Article  Google Scholar 

  • Ramos Filho, G. M., Coelho, V. H. R., da Silva Freitas, E., Xuan, Y., Brocca, L., & Almeida, C. N. (2022). Regional-scale evaluation of 14 satellite-based precipitation products in characterising extreme events and delineating rainfall thresholds for flood hazards. Atmospheric Research, 276, 106259. https://doi.org/10.1016/j.atmosres.2022.106259

    Article  Google Scholar 

  • Santos, C. A. G., Brasil Neto, R. M., Da Silva, R. M., & Costa, S. (2019a). Cluster analysis applied to spatiotemporal variability of monthly precipitation over Paraíba state using tropical rainfall measuring mission (TRMM) data. Remote Sensing, 11, 637–655. https://doi.org/10.3390/rs11060637

  • Santos, C. A. G., Brasil Neto, R. M., Passos, J. S. A., & Da Silva, R. M. (2017a). Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil. Environmental Monitoring and Assessment, 189, 250–278. https://doi.org/10.1007/s10661-017-5948-9

  • Santos, C. A. G., Brasil Neto, R. M., Silva, R. M., & Santos, D. C. (2019b). Innovative approach for geospatial drought severity classification: A case study of Paraíba state, Brazil. Stochastic Environmental Research and Risk Assessment, 33(2), 545–562. https://doi.org/10.1007/s00477-018-1619-9

  • Santos, C. A. G., Silva, R. M., Silva, A. M., & Brasil Neto, R. M. (2017b). Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin, Brazil. Journal of South American Earth Sciences, 74, 54–66. https://doi.org/10.1016/j.jsames.2017.01.002

  • Santos, D. C., Santos, C. A. G., Brasil Neto, R. M., Silva, R. M., & Santos, C. A. C. (2023). Precipitation variability using GPCC data and its relation with atmospheric teleconnections in Northeast Brazil. Climate Dynamics. https://doi.org/10.1007/s00382-023-06838-z

  • Santos, F. M., Oliveira, R. P., & Mauad, F. F. (2018). Lumped versus distributed hydrological modeling of the Jacaré-Guaçu Basin, Brazil. Journal of Environmental Engineering, 144, 04018056. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001397

    Article  Google Scholar 

  • Silva, A. M., Silva, R. M., & Santos, C. A. G. (2019). Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. International Journal of Applied Earth Observation and Geoinformation, 79, 1–11. https://doi.org/10.1016/j.jag.2019.02.012

    Article  CAS  Google Scholar 

  • Silva, R. M., Santos, C. A. G., & Dos Santos, J. Y. G. (2018). Evaluation and modeling of runoff and sediment yield for different land covers under simulated rain in a semiarid region of Brazil. International Journal of Sediment Research, 33, 117–125. https://doi.org/10.1016/j.ijsrc.2017.04.005

    Article  Google Scholar 

  • Silva, R. M., Silva, J. F. C. B. C., Santos, C. A. G., Silva, A. M., & Brasil Neto, R. M. (2020b). Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba, Brazil. Natural Hazards, 102, 829–849. https://doi.org/10.1007/s11069-020-03926-9

  • Silva, A. M., Silva, R. M., Santos, C. A. G., Linhares, F. M., & Xavier, A. P. C. (2022). Modeling the effects of future climate and land use changes on streamflow in a headwater basin in the Brazilian Caatinga biome. Geocarto International, 37, 12436–12465. https://doi.org/10.1080/10106049.2022.2068672

    Article  Google Scholar 

  • Trezza, R., Allen, R. G., & Tasumi, M. (2013). Estimation of actual evapotranspiration along the middle Rio Grande of New Mexico using MODIS and landsat imagery with the METRIC model. Remote Sensing, 5(10), 5397–5423. https://doi.org/10.3390/rs5105397

    Article  Google Scholar 

  • Ursulino, B. E. S., Montenegro, S. M. G. L., Coutinho, A. P., Coelho, V. H. R., Araujo, D. C. S., Gusmão, A. C. V. E. L., Santos Neto, S. M., Lassabatere, L., & Angulo-Jaramillo, R. (2019). Modelling soil water dynamics from soil hydraulic parameters estimated by an alternative method in a tropical experimental basin. Water, 11, 1007. https://doi.org/10.3390/w11051007

    Article  Google Scholar 

  • Vazifehkhah, S., & Kahya, E. (2019). Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale. Agricultural Water Management, 217, 413–425. https://doi.org/10.1016/j.agwat.2019.02.034

    Article  Google Scholar 

  • Wu, B., Ma, Z., & Yan, N. (2020). Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sensing of Environment, 244, 111813. https://doi.org/10.1016/j.rse.2020.111813

    Article  Google Scholar 

  • Xavier, P. C. D., Xavier, R. A., Seabra, V. S., Silva, R. M. (2020). Análise morfométrica da bacia do Alto Rio Paraíba, região semiárida do Estado da Paraiba. Revista Brasileira de Geomorfologia, 21, 602–614. https://doi.org/10.20502/rbg.v21i3.1757

  • Xavier, R. A., Seabra, V. S., Damasceno, J., & Dornellas, P. C. (2016). Geomorphological mapping of the Paraiba (PB) river basin using object-based classification. Acta Geográfica, 10(23), 139–152. https://doi.org/10.5654/acta.v10i23.2812

    Article  Google Scholar 

  • Zhan, C., Liang, C., Zhao, L., Jiang, S., & Zhang, Y. (2024). Differential responses of crop yields to multi-timescale drought in mainland China: Spatiotemporal patterns and climate drivers. Science of the Total Environment, 906, 167559. https://doi.org/10.1016/j.scitotenv.2023.167559

    Article  CAS  Google Scholar 

Download references

Funding

This study was also financed in part by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) – Finance Code 001, the National Council for Scientific and Technological Development, Brazil – CNPq (Grant No. 313358/2021–4, 309330/2021–1, and 420031/2021–9), and the Federal University of Paraíba (Public call No. 01/2021 Produtividade em Pesquisa PROPESQ/PRPG/UFPB proposal code: PVF14853-2021).

Author information

Authors and Affiliations

Authors

Contributions

Glauciene Justino Ferreira da Silva: Data curation, Formal analysis, Writing – Original draft preparation. Richarde Marques da Silva: Conceptualization, Methodology, Visualization, Writing – Reviewing and Editing. Jorge Flavio Casé B. C. Silva, Ana Paula Xavier Dantas: Data curation, Formal analysis. Reginaldo Moura Brasil Neto, Celso Augusto Guimarães Santos: Supervision, Writing – Reviewing and Editing.

Corresponding author

Correspondence to Celso Augusto Guimarães Santos.

Ethics declarations

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, G.J.F., Silva, R.M., Brasil Neto, R.M. et al. Multi-datasets to monitor and assess meteorological and hydrological droughts in a typical basin of the Brazilian semiarid region. Environ Monit Assess 196, 368 (2024). https://doi.org/10.1007/s10661-024-12461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12461-0

Keywords

Navigation