Skip to main content

Advertisement

Log in

Trans-boundary spatio-temporal analysis of Sentinel 5P tropospheric nitrogen dioxide and total carbon monoxide columns over Punjab and Haryana Regions with COVID-19 lockdown impact

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study conducts a spatio-temporal analysis of tropospheric nitrogen dioxide (NO2) and total carbon monoxide (CO) concentrations in the Punjab and Haryana regions of India and Pakistan, using datasets from the Sentinel 5-Precursor (S5P) satellite. These regions, marked by diverse economic growth factors including population expansion, power generation, transportation, and agricultural practices, face similar challenges in atmospheric pollution, particularly evident in major urban centers like Delhi and Lahore, identified as pollution hotspots. The study also spotlights pollution associated with power plants. In urban areas, tropospheric NO2 levels are predominantly elevated due to vehicular emissions, whereas residential activities mainly contribute to CO pollution. However, precisely attributing urban CO sources is complex due to its longer atmospheric residence time and intricate circulation patterns. Notably, the burning of rice crop residue in November significantly exacerbates winter pollution episodes and smog, showing a more pronounced correlation with total CO than with tropospheric NO2 levels. The temporal analysis indicates that the months from October to December witness peak pollution, contrasted with the relatively cleaner period during the monsoon months of July to September. The severe pollution in the OND quarter is attributed to factors such as variations in boundary layer height and depletion of OH radicals. Furthermore, the study highlights the positive impact of the COVID-19 lockdown on air quality, with a significant decrease in NO2 concentrations during April, 2020 (Delhi: 59%, Lahore: 58%). However, the reduction in total CO columns was less significant. The study also correlates lockdown stringency with tropospheric NO2 columns (R2: 0.37 for Delhi, 0.25 for Lahore, 0.22 for Rawalpindi/Islamabad), acknowledging the influence of various meteorological and atmospheric variables. The research highlights the significant impact of crop residue burning on winter pollution levels, particularly on total CO concentrations. The study also shows the notable effect of the COVID-19 lockdown on air quality, significantly reducing NO2 levels. Additionally, it explores the correlation between lockdown stringency and tropospheric NO2 columns, considering various meteorological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Earth Engine data catalog and the script is provided at the link which is customizable to be used for a range of study regions and temporal aggregation scales. https://code.earthengine.google.com/?scriptPath=users%2Fyasir_shabbir%2FS5P_NO2_CO_Paper%3ANO2_TS_2018to2023_monthly_revised

References

  • Abbas, F. (2013). Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interactions, 17(15), 1–23.

    Article  Google Scholar 

  • Ali, S. H., & de Oliveira, J. A. (2018). Pollution and economic development: An empirical research review. Environmental Research Letters, 13, 1–14. https://doi.org/10.1088/1748-9326/aaeea7

    Article  Google Scholar 

  • Azhar, R., Zeeshan, M., & Fatima, K. (2019). Crop residue open field burning in Pakistan; multi-year high spatial resolution emission inventory for 2000–2014. Atmospheric Environment, 208, 20–33.

    Article  ADS  CAS  Google Scholar 

  • Bhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019). Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 16(5), 832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilal, M., Hassan, M., Tahir, D. B. T., Iqbal, M. S., & Shahid, I. (2022). Understanding the role of atmospheric circulations and dispersion of air pollution associated with extreme smog events over South Asian megacity. Environmental Monitoring and Assessment, 194(2), 1–17. https://doi.org/10.1007/S10661-021-09674-Y/METRICS

    Article  Google Scholar 

  • Borsdorff, T., Schneider, A., Lorente, A., Birk, M., Wagner, G., Kivi, R., Hase, F., Feist, D. G., Sussmann, R., Rettinger, M., & others. (2019). Improving the TROPOMI CO data product: Update of the spectroscopic database and destriping of single orbits. Atmospheric Measurement Techniques, 12(10), 5443–5455. https://amt.copernicus.org/articles/12/5443/2019/

  • Byers, L., Friedrich, J., Hennig, R., Kressig, A., Li, X., McCormick, C., & Valeri, L. M. (2018). A global database of power plants. World Resources Institute, 18.

  • Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., & McLinden, C. A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893), 380–387.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Economic Survey of Pakistan 2020, Ministry of Finance, Pakistan. (2020). https://www.finance.gov.pk/survey/chapters_23/13_Transport.pdf. Accessed 14 Feb 2023

  • Eskes, H., van Geffen, J., Sneep, M., Veefkind, P., Niemeijer, S., & Zehner, C. (2021). S5P Nitrogen Dioxide v02. 03.01 intermediate reprocessing on the S5P-PAL system: Readme file. Published. https://data-portal.s5p-pal.com/product-docs/no2/PAL_reprocessing_NO2_v02.03.01_20211215.pdf. Accessed 2 Nov 2022

  • Faisal, M., & Jaelani, L. M. (2023). Spatio-temporal analysis of nitrogen dioxide (NO2) from Sentinel-5P imageries using Google Earth Engine changes during the COVID-19 social restriction policy in jakarta. Natural Hazards Research, 3(2), 344–352. https://doi.org/10.1016/j.nhres.2023.02.006

  • Gharibvand, L. K., Jamali, A. A., & Amiri, F. (2023). Changes in NO2 and O3 levels due to the pandemic lockdown in the industrial cities of Tehran and Arak, Iran using Sentinel 5P images, Google Earth Engine (GEE) and statistical analysis. Stochastic Environmental Research and Risk Assessment, 37(5), 2023–2034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghude, S. D., Beig, G., Kulkarni, P. S., Kanawade, V. P., Fadnavis, S., Remedios, J. J., & Kulkarni, S. H. (2011). Regional co pollution over the Indian-subcontinent and various transport pathways as observed by mopitt. International Journal of Remote Sensing, 32(21), 6133–6148. https://doi.org/10.1080/01431161.2010.507796

    Article  ADS  Google Scholar 

  • Girach, I. A., & Nair, P. R. (2014). Carbon monoxide over Indian region as observed by MOPITT. Atmospheric Environment, 99, 599–609. https://doi.org/10.1016/j.atmosenv.2014.10.019

    Article  ADS  CAS  Google Scholar 

  • Ialongo, I., Herman, J., Krotkov, N., Lamsal, L., Boersma, K. F., Hovila, J., & Tamminen, J. (2016). Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki. UMBC Faculty Collection, 13(1), 205–218. https://amt.copernicus.org/articles/13/205/2020/. Accessed 21 Mar 2023

  • Jethva, H. T., Chand, D., Torres, O., Gupta, P., Lyapustin, A., & Patadia, F. (2018). Agricultural burning and air quality over northern India: A synergistic analysis using NASA’s A-train satellite data and ground measurements. Aerosol and Air Quality Research, 18(PNNL-SA-125481).

  • Kaplan, G., Avdan, Z. Y., & Avdan, U. (2019). Spaceborne nitrogen dioxide observations from the Sentinel-5P TROPOMI over Turkey. Proceedings, 18(1), 4. https://doi.org/10.3390/ecrs-3-06181

  • Khan, R., Noorpoor, A., & Ebadi, A. G. (2022). Effects of air contamination on agriculture. In Sustainable plant nutrition under contaminated environments (pp. 1–16). Springer.

  • Khokhar, M. F., Yasmin, N., Fatima, N., Beirle, S., & Wagner, T. (2015). Detection of trends and seasonal variation in tropospheric nitrogen dioxide over Pakistan. Aerosol and Air Quality Research, 15(7), 2508–2524. https://doi.org/10.4209/aaqr.2015.03.0157

    Article  CAS  Google Scholar 

  • Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., & Brasseur, G. P. (2013). Source attribution of carbon monoxide in India and surrounding regions during wintertime. Journal of Geophysical Research Atmospheres, 118(4), 1981–1995. https://doi.org/10.1002/jgrd.50134

    Article  ADS  CAS  Google Scholar 

  • Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., & Lu, Z. (2015). U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmospheric Environment, 110(2), 130–143. https://doi.org/10.1016/j.atmosenv.2015.03.055

  • Landgraf, J., Borsdorff, T., Langerock, B., & Keppens, A. (2020). S5P Mission Performance Centre Carbon Monoxide Readme.

  • Levelt, P. F., Stein Zweers, D. C., Aben, I., Bauwens, M., Borsdorff, T., De Smedt, I., Eskes, H. J., Lerot, C., Loyola, D. G., Romahn, F., et al. (2022). Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI. Atmospheric Chemistry and Physics, 22(15), 10319–10351.

    Article  ADS  CAS  Google Scholar 

  • Maurya, N. K., Pandey, P. C., Sarkar, S., Kumar, R., & Srivastava, P. K. (2022). Spatio-temporal monitoring of atmospheric pollutants using earth observation Sentinel 5P TROPOMI data: Impact of stubble burning a case sTudy. ISPRS International Journal of Geo-Information, 11(5), 301.

    Article  ADS  Google Scholar 

  • Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96.

    Article  Google Scholar 

  • Nazeer, M., Tabassum, U., & Alam, S. (2016). Environmental pollution and sustainable development in developing countries. The Pakistan Development Review, 55(4), 589–604. https://www.jstor.org/stable/44986005. Accessed 15 Oct 2022

  • Qiao, X., Guo, H., Tang, Y., Wang, P., Deng, W., Zhao, X., Hu, J., Ying, Q., & Zhang, H. (2019). Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 19(9), 5791–5803. https://doi.org/10.5194/acp-19-5791-2019

    Article  ADS  CAS  Google Scholar 

  • Rashid, S. (2017). The implications of the economic problems of environmental pollution in Iraq and ways to address them. Al-Mustansiriya Journal for Arab and International Studies. Letters, 14, 105–106.

    Google Scholar 

  • Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment, 728, 138870.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Sankar, N. V., & Babu, C. A. (2020). Role of vorticity advection and thermal advection in the development of western disturbance during North Indian winter. Meteorology and Atmospheric Physics, 132, 515–529.

    Article  ADS  Google Scholar 

  • Saw, G. K., Dey, S., Kaushal, H., & Lal, K. (2021). Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmospheric Environment, 259, 118514.

    Article  CAS  Google Scholar 

  • Sha, M. K., Langerock, B., Blavier, J.-F.L., Blumenstock, T., Borsdorff, T., Buschmann, M., Dehn, A., De Mazière, M., Deutscher, N. M., Feist, D. G., et al. (2021). Validation of methane and carbon monoxide from Sentinel-5 precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 14(9), 6249–6304.

    Article  ADS  CAS  Google Scholar 

  • Shikwambana, L., Mhangara, P., & Mbatha, N. (2020). Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. International Journal of Applied Earth Observation and Geoinformation, 91, 102130. https://doi.org/10.1016/j.jag.2020.102130

    Article  Google Scholar 

  • Statistical year book. (2018). Ministry of Statistics and Programme Implementation, Government of India. http://mospi.nic.in/publication/statistical-year-book-india. Accessed 17 Dec 2022

  • Sukitpaneenit, M., & Kim Oanh, N. T. (2014). Satellite monitoring for carbon monoxide and particulate matter during forest fire episodes in Northern Thailand. Environmental Monitoring and Assessment, 186(4), 2495–2504. https://doi.org/10.1007/s10661-013-3556-x

    Article  PubMed  CAS  Google Scholar 

  • Takigawa, M., Patra, P. K., Matsumi, Y., Dhaka, S. K., Nakayama, T., Yamaji, K., Kajino, M., & Hayashida, S. (2020). Can Delhi’s pollution be affected by crop fires in the Punjab region? Sola, 16, 86–91.

    Article  ADS  Google Scholar 

  • Tanimoto, H., Ikeda, K., Folkert Boersma, K., Van Der A., R. J., & Garivait, S. (2015). Interannual variability of nitrogen oxides emissions from boreal fires in Siberia and Alaska during 1996–2011 as observed from space. Environmental Research Letters, 10(6). https://doi.org/10.1088/1748-9326/10/6/065004

  • Ul-Haq, Z., Rana, A. D., Ali, M., Mahmood, K., Tariq, S., & Qayyum, Z. (2015). Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data. Advances in Space Research, 56(4), 583–595. https://doi.org/10.1016/j.asr.2015.04.026

    Article  ADS  CAS  Google Scholar 

  • Ul–Haq., Z., Tariq, S., Ali, M., Mahmood, K., Batool, S. A., & Asim Daud Rana. (2014). A study of tropospheric NO2 variability over Pakistan using OMI data. Atmospheric Pollution Research, 5(4), 709–720. https://doi.org/10.5094/APR.2014.080

  • van der A., R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., Van Roozendael, M., De Smedt, I., Peters, D. H. M. U., & Meijer, E. W. (2008). Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. Journal of Geophysical Research Atmospheres, 113(4), 1–12. https://doi.org/10.1029/2007JD009021

  • van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., & Veefkind, J. P. (2019). TROPOMI ATBD of the total and tropospheric NO2 data products. S5p/TROPOMI, 1.4.0, 1–76.

  • Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., et al. (2021). Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO 2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmospheric Measurement Techniques, 14(1), 481–510.

    Article  ADS  CAS  Google Scholar 

  • Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric Chemistry. In J. M. Wallace & P. V Hobbs (Eds.), Atmospheric Science (Second Edition) (Second, pp. 153–207). Academic Press. https://doi.org/10.1016/B978-0-12-732951-2.50010-7

  • WHO. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/250141/?sequence=1. Accessed 25 May 2023

  • Worden, H. M., Deeter, M. N., Frankenberg, C., George, M., Nichitiu, F., Worden, J., Aben, I., Bowman, K. W., Clerbaux, C., Coheur, P. F., De Laat, A. T. J., Detweiler, R., Drummond, J. R., Edwards, D. P., Gille, J. C., Hurtmans, D., Luo, M., Martínez-Alonso, S., Massie, S., … Warner, J. X. (2013). Decadal record of satellite carbon monoxide observations. Atmospheric Chemistry and Physics, 13(2), 837–850. 10.5194/acp-13-837-2013

  • Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Wang, J., Li, Q., Wu, L., Chen, F., Li, C., & others. (2021). Global CO2 consumption by silicate rock chemical weathering: Its past and future. Earth’s Future, 9(5), e2020EF001938.

  • Zhao, R., Huang, X., Xue, J., & Guan, X. (2023a). A practical simulation of carbon sink calculation for urban buildings: A case study of Zhengzhou in China. Sustainable Cities and Society, 99, 104980.

    Article  Google Scholar 

  • Zhao, Y., Hu, M., Jin, Y., Chen, F., Wang, X., Wang, B., Yue, J., & Ren, H. (2023b). Predicting the transmission trend of respiratory viruses in new regions via geospatial similarity learning. International Journal of Applied Earth Observation and Geoinformation, 125, 103559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yasir Shabbir: conceptualization, methodology, software, data curation, and writing—original draft preparation. Rana AhmadFaraz Ishaq: methodology, visualization, investigation, and data analysis. Obaid-ur-Rehman: software, validation, and data analysis. Syed Roshaan Ali Shah: data analysis and writing—reviewing and editing. Zhou Guanhua: data analysis and supervision.

Corresponding author

Correspondence to Yasir Shabbir.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, Y., Guanhua, Z., Obaid-ur-Rehman et al. Trans-boundary spatio-temporal analysis of Sentinel 5P tropospheric nitrogen dioxide and total carbon monoxide columns over Punjab and Haryana Regions with COVID-19 lockdown impact. Environ Monit Assess 196, 291 (2024). https://doi.org/10.1007/s10661-024-12458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12458-9

Keywords

Navigation