Skip to main content
Log in

Artificial intelligence methods for modeling gasification of waste biomass: a review

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Gasification is a highly promising thermochemical process that shows considerable potential for the efficient conversion of waste biomass into syngas. The assessment of the feasibility and comparative advantages of different biomass and waste gasification schemes is contingent upon a multifaceted combination of interrelated criteria. Conventional analytical approaches employed to facilitate decision-making rely on a multitude of inadequately defined parameters. Consequently, substantial efforts have been directed toward enhancing the efficiency and productivity of thermochemical conversion processes. In recent times, artificial intelligence (AI)-based models and algorithms have gained prominence, serving as indispensable tools for expediting these processes and formulating strategies to address the growing demand for energy. Notably, machine learning (ML) and deep learning (DL) have emerged as cutting-edge AI models, demonstrating exceptional effectiveness and profound relevance in the realm of thermochemical conversion systems. This study provides an overview of the machine learning (ML) and deep learning (DL) approaches utilized during gasification and evaluates their benefits and drawbacks. Many industries and applications related to energy conversion systems use AI algorithms. Predicting the output of conversion systems and subjects linked to optimization are two of this science’s critical applications. This review sheds light on the burgeoning utility of AI, particularly ML and DL, which have garnered significant attention due to their applications in productivity prediction, process optimization, real-time process monitoring, and control. Furthermore, the integration of hybrid models has become commonplace, primarily owing to their demonstrated success in modeling and optimization tasks. Importantly, the adoption of these algorithms significantly enhances the model’s capability to tackle intricate challenges, as DL methodologies have evolved to offer heightened accuracy and reduced susceptibility to errors. Within the scope of this study, an exhaustive exploration of ML and DL techniques and their applications has been conducted, uncovering existing research knowledge gaps. Based on a comprehensive critical analysis, this review offers recommendations for future research directions, accentuating the pivotal findings and conclusions derived from the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Ash content

ABR :

AdaBoost regression

Adj R 2 :

Adjusted coefficient of determination

AE :

Absolute error

ANN :

Artificial neural networks

BP :

BackPropagation

CFBP :

Cascade-forward back propagation

CFBP-GA :

Cascade-forward back propagation-genetic algorithm

CHP :

Combined heat and power

CNN :

Convolutional neural network

DT :

Decision tree

DTR :

Decision tree regression

ET :

Ensembled tree

FBG :

Fluidized bed biomass gasifier

FEBP :

Feed-forward back propagation

GA :

Genetic algorithms

GAN :

Generative adversative network

GBR :

Gradient boost regressor

GPR :

Gaussian process regression

GRU :

Gated recurrent units

HHV :

Higher heating value

HTG :

Hydrothermal gasification

LHV :

Lower heating value of gas

LHVp :

Heating value of gasification products

LM :

Levenberg-Marquardt

LSTM :

Long short-term memory

MAD :

Mean absolute deviation

MAE :

Mean absolute error

MAPE :

Mean absolute percentage error

MC :

Moisture content

MCF :

Monte Carlo filtering

ME :

Mean error

MLP :

Multilayer perceptron

MRC :

Machine reading comprehension

MSE :

Mean squared error

MSW :

Municipal solid waste

NLRQM :

Non-linear response quadratic model

NRMSE :

Normalized root mean squared error

OEM :

Optimized ensemble model

OML :

Optimize machine learning

PR :

Polynomial regression

PSO :

Particle swarm optimization

R 2 :

Coefficient of determination

RAE :

Relative absolute error

RBF :

Radial basis function

RE :

Reconstruction error

RF :

Random forest

RMSE :

Root means square error

RNN :

Recurrent neural network

RPE :

Relative percentage error

SD :

Standard deviation

SE :

Standard error

SHAP :

Shapley Additive exPlanations

SL :

Super learner

SQP :

Sequential quadratic programming

SVM :

Support vector machines

SVR :

Support vector regression

VM :

Volatile matter

XGB :

Extreme gradient boosting

References

  • Abdel-Jaber, H., Devassy, D., Al Salam, A., Hidaytallah, L., & El-Amir, M. (2022). A review of deep learning algorithms and their applications in healthcare. In Algorithms (Vol. 15, Issue 2). MDPI. https://doi.org/10.3390/a15020071

  • Afolabi, I. C., Popoola, S. I., & Bello, O. S. (2020). Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometrics and Intelligent Laboratory Systems, 203. https://doi.org/10.1016/j.chemolab.2020.104053

  • Aghbashlo, M., Peng, W., Tabatabaei, M., Kalogirou, S. A., Soltanian, S., Hosseinzadeh-Bandbafha, H., Mahian, O., & Lam, S. S. (2021). Machine learning technology in biodiesel research: A review. In Progress in Energy and Combustion Science (Vol. 85). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2021.100904

  • Aguilar, D. L., Medina-Perez, M. A., Loyola-Gonzalez, O., Choo, K. K. R., & Bucheli-Susarrey, E. (2023). Towards an interpretable autoencoder: A decision-tree-based autoencoder and its application in anomaly detection. IEEE Transactions on Dependable and Secure Computing, 20(2), 1048–1059. https://doi.org/10.1109/TDSC.2022.3148331

    Article  Google Scholar 

  • Ahmed, S. F., Alam, M. S., Bin, H., Rozbu, M., Ishtiak, M. R., Rafa, T., Mofijur, N., Shawkat, M., Ali, A. B. M., & Gandomi, A. H. (2023). Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artificial Intelligence Review. https://doi.org/10.1007/s10462-023-10466-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2022). Recent advances in thermodynamic analysis of biomass gasification: A review on numerical modelling and simulation. In Journal of the Energy Institute (Vol. 102, pp. 395–419). Elsevier B.V. https://doi.org/10.1016/j.joei.2022.05.003

  • AkyolK, K., & Karaci, A. (2021). Diyabet Hastalığının Erken Aşamada Tahmin Edilmesi İçin Makine Öğrenme Algoritmalarının Performanslarının Karşılaştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(6), 123–134. https://doi.org/10.29130/dubited.1014508

    Article  Google Scholar 

  • Alaedini, A. H., Tourani, H. K., & Saidi, M. (2023). A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development. In Journal of Environmental Management (Vol. 329). Academic Press. https://doi.org/10.1016/j.jenvman.2022.117077

  • Alain, G., Almahairi, A., Bahdanau, D., Bastien, F., Cho, K., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow, I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.-P., Hidasi, B., Honari, S., Jain, A., … Zhang, Y. (2016). Theano: A Python framework for fast computation of mathematical expressions. http://arxiv.org/abs/1605.02688

  • Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Del Ser, J., Díaz-Rodríguez, N., & Herrera, F. (2023). Explainable artificial intelligence (XAI): What we know and what is left to attain trustworthy artificial intelligence. Information Fusion. https://doi.org/10.1016/j.inffus.2023.101805

    Article  Google Scholar 

  • Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., van Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. In Electronics (Switzerland) (Vol. 8, Issue 3). MDPI AG. https://doi.org/10.3390/electronics8030292

  • Angeles, M. J., Leyva, C., Ancheyta, J., & Ramírez, S. (2014). A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst. Catalysis Today, 220–222, 274–294. https://doi.org/10.1016/j.cattod.2013.08.016

    Article  CAS  Google Scholar 

  • Asaad, S. M., Inayat, A., Rocha-Meneses, L., Jamil, F., Ghenai, C., & Shanableh, A. (2023). Prospective of response surface methodology as an optimization tool for biomass gasification process. In Energies (Vol. 16, Issue 1). MDPI. https://doi.org/10.3390/en16010040

  • Asadi, A., Kadijani, O. N., Doranehgard, M. H., Bozorg, M. V., Xiong, Q., Shadloo, M. S., & Li, L. K. B. (2020). Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine. Renewable Energy, 150, 1019–1029. https://doi.org/10.1016/j.renene.2019.11.088

    Article  CAS  Google Scholar 

  • Ascher, S., Wang, X., Watson, I., Sloan, W., & You, S. (2022a). Interpretable machine learning to model biomass and waste gasification. Bioresource Technology, 364, 128062. https://doi.org/10.1016/j.biortech.2022.128062

    Article  CAS  PubMed  Google Scholar 

  • Ascher, S., Watson, I., & You, S. (2022b). Machine learning methods for modelling the gasification and pyrolysis of biomass and waste. In Renewable and Sustainable Energy Reviews (Vol. 155). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111902

  • Ashwin, N. R., Cao, Z., Muralidhar, N., Tafti, D., & Karpatne, A. (2022). Deep learning methods for predicting fluid forces in dense particle suspensions. Powder Technology, 401. https://doi.org/10.1016/j.powtec.2022.117303

  • Ayodele, B. V., Mustapa, S. I., Kanthasamy, R., Zwawi, M., & Cheng, C. K. (2021). Modeling the prediction of hydrogen production by co-gasification of plastic and rubber wastes using machine learning algorithms. International Journal of Energy Research, 45(6), 9580–9594. https://doi.org/10.1002/er.6483

    Article  ADS  CAS  Google Scholar 

  • Ayodele, B. V., Mustapa, S. I., Kanthasamy, R., Mohammad, N., AlTurki, A., & Babu, T. S. (2022). Performance analysis of support vector machine, Gaussian process regression, sequential quadratic programming algorithms in modeling hydrogen-rich syngas production from catalyzed co-gasification of biomass wastes from oil palm. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.05.066

    Article  Google Scholar 

  • Bahadar, A., Kanthasamy, R., Sait, H. H., Zwawi, M., Algarni, M., Ayodele, B. V., Cheng, C. K., & Wei, L. J. (2022). Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal Co-gasification techniques: A multi-criteria modeling approach. Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132052

  • Bank, D., Koenigstein, N., & Giryes, R. (2023). Autoencoders. Machine Learning for Data Science Handbook, 353–374. https://doi.org/10.1007/978-3-031-24628-9_16

  • Brophy, E., Wang, Z., She, Q., & Ward, T. (2023). Generative adversarial networks in time series: A systematic literature review. In ACM Computing Surveys (Vol. 55, Issue 10). Association for Computing Machinery. https://doi.org/10.1145/3559540

  • Chalermsinsuwan, B., Li, Y. H., & Manatura, K. (2023). Optimization of gasification process parameters for COVID-19 medical masks using response surface methodology. Alexandria Engineering Journal, 62, 335–347. https://doi.org/10.1016/j.aej.2022.07.037

    Article  Google Scholar 

  • Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J. S., Ho, S. H., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. In Progress in Energy and Combustion Science (Vol. 82). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2020.100887

  • Chen, Y., Yang, X. H., Wei, Z., Heidari, A. A., Zheng, N., Li, Z., Chen, H., Hu, H., Zhou, Q., & Guan, Q. (2022). Generative adversarial networks in medical image augmentation: A review. Computers in Biology and Medicine, 144. https://doi.org/10.1016/j.compbiomed.2022.105382

  • Chilakamarry, C. R., Mimi Sakinah, A. M., Zularisam, A. W., Sirohi, R., Khilji, I. A., Ahmad, N., & Pandey, A. (2022). Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. In Bioresource Technology (Vol. 343). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2021.126065

  • Chu, C., Wang, P., Boré, A., Ma, W., Chen, G., & Wang, P. (2023a). Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior. Energy, 262, 125385. https://doi.org/10.1016/j.energy.2022.125385

    Article  CAS  Google Scholar 

  • Chu, Z., Li, Y., Zhang, C., Fang, Y., & Zhao, J. (2023b). A review on resource utilization of oil sludge based on pyrolysis and gasification. Journal of Environmental Chemical Engineering, 109692. https://doi.org/10.1016/j.jece.2023.109692

  • Cihan, P. (2022). The machine learning approach for predicting the number of intensive care, intubated patients and death: The COVID-19 pandemic in Turkey. Sigma Journal of Engineering and Natural Sciences, 40(1), 85–94. https://doi.org/10.14744/sigma.2022.00007

    Article  MathSciNet  Google Scholar 

  • Cihan, P. (2023). Effect of parameter selection on heart attack risk prediction in an RNN model. International Conference on Applied Engineering and Natural Sciences, 1(1), 56–60. https://doi.org/10.59287/icaens.964

    Article  MathSciNet  Google Scholar 

  • Cihan, P., Kalıpsız, O., & Gökçe, E. (2020). Computer-aided diagnosis in neonatal lambs. Pamukkale University Journal of Engineering Sciences, 26(2), 385–391. https://doi.org/10.5505/pajes.2019.51447

    Article  Google Scholar 

  • Cihan, P., Gökçe, E., Atakişi, O., Kirmizigül, A. H., & Erdoğan, H. M. (2021a). Prediction of immunoglobulin g in lambs with artificial intelligence methods. Kafkas Universitesi Veteriner Fakultesi Dergisi, 27(1), 21–27. https://doi.org/10.9775/kvfd.2020.24642

    Article  Google Scholar 

  • Cihan, P., & Ozger, Z. B. (2022). A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods. Computational Biology and Chemistry, 98. https://doi.org/10.1016/j.compbiolchem.2022.107688

  • Cihan, P., Kalıpsız, O., & Gökçe, E. (2019). Effect of imputation methods in the classifier performance. Sakarya University Journal of Science, 1225–1236. https://doi.org/10.16984/saufenbilder.515716

  • Cihan, P., Ozel, H., & Ozcan, H. K. (2021b). Modeling of atmospheric particulate matters via artificial intelligence methods. Environmental Monitoring and Assessment, 193(5). https://doi.org/10.1007/s10661-021-09091-1

  • Cihan, P. (2020). Deep learning-based approach for missing data imputation. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 8(2), 337–343. https://doi.org/10.20290/estubtdb.747821

  • Cihan, P. (2022a). Impact of the COVID-19 lockdowns on electricity and natural gas consumption in the different industrial zones and forecasting consumption amounts: Turkey case study. International Journal of Electrical Power and Energy Systems, 134. https://doi.org/10.1016/j.ijepes.2021.107369

  • Cortazar, M., Santamaria, L., Lopez, G., Alvarez, J., Zhang, L., Wang, R., Bi, X., & Olazar, M. (2023). A comprehensive review of primary strategies for tar removal in biomass gasification. In Energy Conversion and Management (Vol. 276). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2022.116496

  • Da’u, A., & Salim, N. (2020). Recommendation system based on deep learning methods: A systematic review and new directions. Artificial Intelligence Review, 53(4), 2709–2748. https://doi.org/10.1007/s10462-019-09744-1

    Article  Google Scholar 

  • Dong, M., Feng, L., & Qin, B. (2023). Characteristics of coal gasification with CO2 after microwave irradiation based on TGA. FTIR and DFT Theory. Energy, 267, 126619. https://doi.org/10.1016/j.energy.2023.126619

    Article  CAS  Google Scholar 

  • Duc Bui, V., Phuong Vu, H., Phuong Nguyen, H., Quang Duong, X., Tuyen Nguyen, D., Tuan Pham, M., & Quy Phong Nguyen, P. (2023). Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy. Sustainable Energy Technologies and Assessments, 55. https://doi.org/10.1016/j.seta.2022.102991

  • Elmaz, F., Yücel, Ö., & Mutlu, A. Y. (2020). Predictive modeling of biomass gasification with machine learning-based regression methods. Energy, 191. https://doi.org/10.1016/j.energy.2019.116541

  • Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An introductory review of deep learning for prediction models with big data. In Frontiers in Artificial Intelligence (Vol. 3). Frontiers Media S.A. https://doi.org/10.3389/frai.2020.00004

  • Fang, Y., Ma, L., Yao, Z., Li, W., & You, S. (2022). Process optimization of biomass gasification with a Monte Carlo approach and random forest algorithm. Energy Conversion and Management, 264. https://doi.org/10.1016/j.enconman.2022.115734

  • Forootan, M. M., Larki, I., Zahedi, R., & Ahmadi, A. (2022). machine learning and deep learning in energy systems: A review. In Sustainability (Switzerland) (Vol. 14, Issue 8). MDPI. https://doi.org/10.3390/su14084832

  • Fu, W., Zhang, Y., Cui, L., Liu, H., & Maqsood, T. (2023). Experimental microwave-assisted air gasification of biomass in fluidized bed reactor. Bioresource Technology, 369, 128378. https://doi.org/10.1016/j.biortech.2022.128378

    Article  CAS  PubMed  Google Scholar 

  • García Nieto, P. J., García-Gonzalo, E., Sánchez Lasheras, F., Paredes-Sánchez, J. P., & Riesgo Fernández, P. (2019). Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques. Journal of Computational and Applied Mathematics, 357, 284–301. https://doi.org/10.1016/j.cam.2019.03.009

    Article  MathSciNet  Google Scholar 

  • Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. https://github.com/goodfeli/adversarial. Accessed 18 Feb 2024.

  • Guan, Y., Chaffart, D., Liu, G., Tan, Z., Zhang, D., Wang, Y., Li, J., & Ricardez-Sandoval, L. (2022). Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives. In Chemical Engineering Science (Vol. 248). Elsevier Ltd. https://doi.org/10.1016/j.ces.2021.117224

  • Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2023). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313–3332. https://doi.org/10.1109/TKDE.2021.3130191

    Article  Google Scholar 

  • Guo, Q., Yan, B., Hu, Y., Guo, X., Wu, W., Cheng, Z., Chen, G., & Hou, L. (2023). A novel reutilization of ash from biomass gasification process: Feasibility and products improvement analysis. Fuel, 339, 127386. https://doi.org/10.1016/j.fuel.2022.127386

    Article  CAS  Google Scholar 

  • Guo, H. Nan, Wu, S. Biao, Tian, Y. Jie, Zhang, J., & Liu, H. Tao. (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. In Bioresource Technology (Vol. 319). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2020.124114

  • Halba, A., Vidyarthi, P. K., & Arora, P. (2022). Gasification as a potential solution for forest fires in the Indian Himalayan Region: A review. In Bioresource Technology Reports (Vol. 19). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2022.101162

  • Hameed, Z., Aslam, M., Khan, Z., Maqsood, K., Atabani, A. E., Ghauri, M., Khurram, M. S., Rehan, M., & Nizami, A. S. (2021). Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects. Renewable and Sustainable Energy Reviews, 136. https://doi.org/10.1016/j.rser.2020.110375

  • Haq, Z. U., Ullah, H., Khan, M. N. A., Naqvi, S. R., & Ahsan, M. (2022). Hydrogen production optimization from sewage sludge supercritical gasification process using machine learning methods integrated with genetic algorithm. Chemical Engineering Research and Design, 184, 614–626. https://doi.org/10.1016/j.cherd.2022.06.020

    Article  CAS  Google Scholar 

  • Hashem Samadi, S., Ghobadian, B., Nosrati, M., & Rezaei, M. (2023). Investigation of factors affecting performance of a downdraft fixed bed gasifier using optimized MLP neural networks approach. Fuel, 333. https://doi.org/10.1016/j.fuel.2022.126249

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). In Springer.

    Book  Google Scholar 

  • Huang, W., Zhang, R., Giannis, A., Li, C., & He, C. (2023). Sequential hydrothermal carbonization and CO2 gasification of sewage sludge for improved syngas production with mitigated emissions of NOx precursors. Chemical Engineering Journal, 454, 140239. https://doi.org/10.1016/j.cej.2022.140239

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA). (2019). Renewables 2019. https://www.iea.org/reports/renewables-2019. Accessed 18 Feb 2024.

  • Jamro, I. A., Raheem, A., Khoso, S., Baloch, H. A., Kumar, A., Chen, G., Bhagat, W. A., Wenga, T., & Ma, W. (2023). Investigation of enhanced H2 production from municipal solid waste gasification via artificial neural network with data on tar compounds. Journal of Environmental Management, 328. https://doi.org/10.1016/j.jenvman.2022.117014

  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685–695. https://doi.org/10.1007/s12525-021-00475-2/Published

    Article  Google Scholar 

  • Jiang, C., Jin, X., Xu, T., Xiao, B., Hu, Z., & Wang, X. (2023). Biomass chemical looping gasification for syngas production using modified hematite as oxygen carriers. Journal of Environmental Sciences (china), 125, 171–184. https://doi.org/10.1016/j.jes.2021.11.028

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., & Luo, J. (2022). Graph neural network for traffic forecasting: A survey. In Expert Systems with Applications (Vol. 207). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2022.117921

  • Kardani, N., Zhou, A., Nazem, M., & Lin, X. (2021). Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel, 289. https://doi.org/10.1016/j.fuel.2020.119903

  • Kargbo, H. O., Zhang, J., & Phan, A. N. (2021). Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network. Applied Energy, 302. https://doi.org/10.1016/j.apenergy.2021.117567

  • Kartal, F., & Özveren, U. (2020). A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®. Energy, 209. https://doi.org/10.1016/j.energy.2020.118457

  • Kartal, F., & Özveren, U. (2022a). Prediction of activation energy for combustion and pyrolysis by means of machine learning. Thermal Science and Engineering Progress, 33. https://doi.org/10.1016/j.tsep.2022.101346

  • Kartal, F., & Özveren, U. (2022b). The dimensional design of a laboratory-scale fluidized bed gasifier using machine learning based on a kinetic method. Energy Conversion and Management, 269, 116183. https://doi.org/10.1016/j.enconman.2022.116183

    Article  CAS  Google Scholar 

  • Khan, M., Raza Naqvi, S., Ullah, Z., Ali Ammar Taqvi, S., Nouman Aslam Khan, M., Farooq, W., Taqi Mehran, M., Juchelková, D., & Štěpanec, L. (2023). Applications of machine learning in thermochemical conversion of biomass-A review. Fuel, 332. https://doi.org/10.1016/j.fuel.2022.126055

  • Khurram Faridi, I., Tsotsas, E., Heineken, W., Koegler, M., & Kharaghani, A. (2022). Spatio-temporal prediction of temperature in fluidized bed biomass gasifier using dynamic recurrent neural network method. Applied Thermal Engineering, 119334. https://doi.org/10.1016/j.applthermaleng.2022.119334

  • Kim, J. Y., Kim, D., Li, Z. J., Dariva, C., Cao, Y., & Ellis, N. (2023). Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach. Energy, 263. https://doi.org/10.1016/j.energy.2022.125900

  • Kombe, E. Y., Lang’at, N., Njogu, P., Malessa, R., Weber, C. T., Njoka, F., & Krause, U. (2022). Process modeling and evaluation of optimal operating conditions for production of hydrogen-rich syngas from air gasification of rice husks using aspen plus and response surface methodology. Bioresource Technology, 361. https://doi.org/10.1016/j.biortech.2022.127734

  • Kong, G., Wang, K., Zhang, X., Li, J., Han, L., & Zhang, X. (2022). Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars. Bioresource Technology, 363. https://doi.org/10.1016/j.biortech.2022.127960

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html. Accessed 18 Feb 2024.

  • Kumar Sharma, A., Kumar Ghodke, P., Goyal, N., Nethaji, S., & Chen, W.-H. (2022). Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. Bioresource Technology, 364, 128076. https://doi.org/10.1016/j.biortech.2022.128076

    Article  CAS  PubMed  Google Scholar 

  • Kurian, V., Gill, M., Dhakal, B., & Kumar, A. (2022). Recent trends in the pyrolysis and gasification of lignocellulosic biomass. Biofuels and Bioenergy: A Techno-Economic Approach, 511–552. https://doi.org/10.1016/B978-0-323-90040-9.00028-X

  • Kushwah, A., Reina, T. R., & Short, M. (2022). Modelling approaches for biomass gasifiers: A comprehensive overview. In Science of the Total Environment (Vol. 834). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2022.155243

  • Lachos-Perez, D., César Torres-Mayanga, P., Abaide, E. R., Zabot, G. L., & de Castilhos, F. (2022). Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities. In Bioresource Technology (Vol. 343). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2021.126084

  • Li, W., & Song, Y. (2022). Artificial neural network model of catalytic coal gasification in fixed bed. Journal of the Energy Institute. https://doi.org/10.1016/j.joei.2022.08.012

    Article  Google Scholar 

  • Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Li, J., Pan, L., Suvarna, M., Tong, Y. W., & Wang, X. (2020). Machine learning prediction of syngas composition of hydrothermal gasification from wet organic wastes. In International Conference on Applied Energy 2020, 1–10 Dec, Bangkok, Thailand, Paper ID: 199. ICAE. https://doi.org/10.46855/energy-proceedings-7161

  • Li, J., Pan, L., Suvarna, M., & Wang, X. (2021a). Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chemical Engineering Journal, 426. https://doi.org/10.1016/j.cej.2021.131285

  • Li, J., Suvarna, M., Pan, L., Zhao, Y., & Wang, X. (2021b). A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification. Applied Energy, 304. https://doi.org/10.1016/j.apenergy.2021.117674

  • Li, J., Yao, X., & Xu, K. (2021c). A comprehensive model integrating BP neural network and RSM for the prediction and optimization of syngas quality. Biomass and Bioenergy, 155. https://doi.org/10.1016/j.biombioe.2021.106278

  • Li, H., Li, M., Wang, H., Tan, M., Zhang, G., Huang, Z., & Yuan, X. (2023a). A review on migration and transformation of nitrogen during sewage sludge thermochemical treatment: Focusing on pyrolysis, gasification and combustion. In Fuel Processing Technology (Vol. 240). Elsevier B.V. https://doi.org/10.1016/j.fuproc.2022.107562

  • Li, J., Wang, H., Chen, H., Wu, H., Xu, G., Dong, Y., Zhao, Q., & Liu, T. (2023b). Comparative thermodynamic and techno-economic analysis of various medical waste-to-hydrogen/methanol pathways based on plasma gasification. Applied Thermal Engineering, 221. https://doi.org/10.1016/j.applthermaleng.2022.119762

  • Lian, Z., Wang, Y., Zhang, X., Yusuf, A., Famiyeh, Lord, Murindababisha, D., Jin, H., Liu, Y., He, J., Wang, Y., Yang, G., & Sun, Y. (2021). Hydrogen production by fluidized bed reactors: A quantitative perspective using the supervised machine learning approach. J, 4(3), 266–287. https://doi.org/10.3390/j4030022

  • Liang, J., Liu, Y., Chen, J., E, J., Leng, E., Zhang, F., & Liao, G. (2023). Performance comparison of black liquor gasification and oxidation in supercritical water from thermodynamic, environmental, and techno-economic perspectives. Fuel, 334. https://doi.org/10.1016/j.fuel.2022.126787

  • Liao, M., & Yao, Y. (2021). Applications of artificial intelligence-based modeling for bioenergy systems: A review. In GCB Bioenergy (Vol. 13, Issue 5, pp. 774–802). Blackwell Publishing Ltd. https://doi.org/10.1111/gcbb.12816

  • Lin, E., Lin, C. H., & Lane, H. Y. (2021). Deep learning with neuroimaging and genomics in Alzheimer’s disease. In International Journal of Molecular Sciences (Vol. 22, Issue 15). MDPI. https://doi.org/10.3390/ijms22157911

  • Lin, K., Zhao, Y., Kuo, J. H., Deng, H., Cui, F., Zhang, Z., Zhang, M., Zhao, C., Gao, X., Zhou, T., & Wang, T. (2022). Toward smarter management and recovery of municipal solid waste: A critical review on deep learning approaches. In Journal of Cleaner Production (Vol. 346). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2022.130943

  • Liu, C., Chen, D., Tang, Q., Abuelgasim, S., Xu, C., Wang, W., Luo, J., Zhao, Z., Abdalazeez, A., & Zhang, R. (2023b). Chemical looping gasification of biomass char for hydrogen-rich syngas production via Mn-doped Fe2O3 oxygen carrier. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.12.190

    Article  Google Scholar 

  • Liu, S., Yang, Y., Yu, L., Zhu, F., Cao, Y., Liu, X., Yao, A., & Cao, Y. (2022). Predicting gas production by supercritical water gasification of coal using machine learning. Fuel, 329. https://doi.org/10.1016/j.fuel.2022.125478

  • Liu, C., Chen, D., Tang, Q., Abuelgasim, S., Xu, C., Luo, J., Zhao, Z., & Abdalazeez, A. (2023a). Hydrogen-rich syngas production from straw char by chemical looping gasification: The synergistic effect of Mn and Fe on Ni-based spinel structure as oxygen carrier. Fuel, 334. https://doi.org/10.1016/j.fuel.2022.126803

  • Liu, Q., Zhao, Y. jie, Huang, Y., Pei, F., Cui, Y., Shi, L. juan, Chang, L. ping, & Yi, Q. (2023c). Pilot test of low-rank coal pyrolysis coupled with gasification to hydrogen-rich gas for direct reduced iron: Process modeling, simulation and thermodynamic analysis. Fuel, 331. https://doi.org/10.1016/j.fuel.2022.125862

  • Liu, X., Shen, J., Guo, Y., Wang, S., Chen, B., Luo, L., & Zhang, H. (2023d). Technical progress and perspective on the thermochemical conversion of kitchen waste and relevant applications: A comprehensive review. In Fuel (Vol. 331). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2022.125803

  • Lu, B., Bai, B., Zhang, R., Ma, J., Mao, L., Shi, J., & Jin, H. (2023). Study on gasification characteristics and kinetics of polyformaldehyde plastics in supercritical water. Journal of Cleaner Production, 383. https://doi.org/10.1016/j.jclepro.2022.135459

  • Mahmoud, H. A. H., Hakami, N. A., & Hafez, A. M. (2022). An intelligent deep learning model for CO2 adsorption prediction. Adsorption Science and Technology, 2022. https://doi.org/10.1155/2022/8136302

  • Maitlo, G., Ali, I., Mangi, K. H., Ali, S., Maitlo, H. A., Unar, I. N., & Pirzada, A. M. (2022). Thermochemical conversion of biomass for syngas production: Current status and future trends. In Sustainability (Switzerland) (Vol. 14, Issue 5). MDPI. https://doi.org/10.3390/su14052596

  • Manatura, K., Chalermsinsuwan, B., Kaewtrakulchai, N., Kwon, E. E., & Chen, W. H. (2023). Machine learning and statistical analysis for biomass torrefaction: A review. In Bioresource Technology (Vol. 369). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2022.128504

  • Martins, A. H., Rouboa, A., & Monteiro, E. (2023). On the green hydrogen production through gasification processes: A techno-economic approach. Journal of Cleaner Production, 383. https://doi.org/10.1016/j.jclepro.2022.135476

  • Mazzoni, L., Janajreh, I., Elagroudy, S., & Ghenai, C. (2020). Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge. Energy, 196. https://doi.org/10.1016/j.energy.2020.117001

  • Mishra, K., Singh Siwal, S., Kumar Saini, A., & Thakur, V. K. (2023). Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production. Fuel, 332. https://doi.org/10.1016/j.fuel.2022.126169

  • Mishra, S., & Upadhyay, R. K. (2021). Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Materials Science for Energy Technologies, 4, 329–340. https://doi.org/10.1016/j.mset.2021.08.009

    Article  CAS  Google Scholar 

  • Mu, L., Wang, R., Xie, P., Li, Y., Huang, X., Yin, H., & Dong, M. (2023). Comparative investigation on the pyrolysis of crop, woody, and herbaceous biomass: Pyrolytic products, structural characteristics, and CO2 gasification. Fuel, 335. https://doi.org/10.1016/j.fuel.2022.126940

  • Mukherjee, A., Bruijnincx, P., & Junginger, M. (2023). Techno-economic competitiveness of renewable fuel alternatives in the marine sector. Renewable and Sustainable Energy Reviews, 174. https://doi.org/10.1016/j.rser.2022.113127

  • Mutlu, A. Y., & Yucel, O. (2018). An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification. Energy, 165, 895–901. https://doi.org/10.1016/j.energy.2018.09.131

    Article  CAS  Google Scholar 

  • Nam, K. J., Hwangbo, S., & Yoo, C. K. (2020). A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea. Renewable and Sustainable Energy Reviews, 122. https://doi.org/10.1016/j.rser.2020.109725

  • Narayan, V., Awasthi, S., Fatima, N., Faiz, M., & Srivastava, S. (2023). Deep learning approaches for human gait recognition: A review. 2023 International Conference on Artificial Intelligence and Smart Communication, AISC 2023, 763–768. https://doi.org/10.1109/AISC56616.2023.10085665

  • Norwegian Ministry of Climate and Environment (NMCE). (2019). Norway’s National Plan related to the Decision of the EEA Joint Committee No. 269/2019 of 25 October 2019. Norwegian Ministry of Climate and Environment.

  • Nowakowski, P., & Pamuła, T. (2020). Application of deep learning object classifier to improve e-waste collection planning. Waste Management, 109, 1–9. https://doi.org/10.1016/j.wasman.2020.04.041

    Article  PubMed  Google Scholar 

  • Nunes, L. J. R. (2022). Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. In Results in Engineering (Vol. 14). Elsevier B.V. https://doi.org/10.1016/j.rineng.2022.100408

  • Okati, A., Reza Khani, M., Shokri, B., Rouboa, A., & Monteiro, E. (2022). Optimizing the operating conditions for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid waste and coal using Aspen Plus. International Journal of Hydrogen Energy, 47(63), 26891–26900. https://doi.org/10.1016/j.ijhydene.2022.06.058

    Article  CAS  Google Scholar 

  • Okati, A., Khani, M. R., Shokri, B., Monteiro, E., & Rouboa, A. (2023a). On the operating parameters for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid wastes and polypropylene using a constrained model in Aspen plus. Journal of the Energy Institute, 101173. https://doi.org/10.1016/j.joei.2023.101173

  • Okati, A., Reza Khani, M., Shokri, B., Monteiro, E., & Rouboa, A. (2023b). Parametric studies over a plasma co-gasification process of biomass and coal through a restricted model in Aspen plus. Fuel, 331. https://doi.org/10.1016/j.fuel.2022.125952

  • Ozbas, E. E., Aksu, D., Ongen, A., Aydin, M. A., & Ozcan, H. K. (2019). Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. International Journal of Hydrogen Energy, 44(32), 17260–17268. https://doi.org/10.1016/j.ijhydene.2019.02.108

    Article  CAS  Google Scholar 

  • Özveren, U., Kartal, F., Sezer, S., & Özdoğan, Z. S. (2022). Investigation of steam gasification in thermogravimetric analysis by means of evolved gas analysis and machine learning. Energy, 239. https://doi.org/10.1016/j.energy.2021.122232

  • Pan, Z., Wang, Y., Wang, K., Chen, H., Yang, C., & Gui, W. (2023). Imputation of missing values in time series using an adaptive-learned median-filled deep autoencoder. IEEE Transactions on Cybernetics, 53(2), 695–706. https://doi.org/10.1109/TCYB.2022.3167995

    Article  PubMed  Google Scholar 

  • Papa, A. A., Savuto, E., Carlo, Di., di, A., Tacconi, A., & Rapagnà, S. (2023). Synergic effects of bed materials and catalytic filter candle for the conversion of tar during biomass steam gasification. Energies, 16(2), 595. https://doi.org/10.3390/en16020595

    Article  CAS  Google Scholar 

  • Pomeroy, B., Grilc, M., & Likozar, B. (2022). Artificial neural networks for bio-based chemical production or biorefining: A review. Renewable and Sustainable Energy Reviews, 153. https://doi.org/10.1016/j.rser.2021.111748

  • Pu, Y., Apel, D. B., Liu, V., & Mitri, H. (2019). Machine learning methods for rockburst prediction-state-of-the-art review. International Journal of Mining Science and Technology, 29(4), 565–570. https://doi.org/10.1016/j.ijmst.2019.06.009

    Article  Google Scholar 

  • Qian, L., Ni, J., Xu, W., Yuan, C., Wang, S., Hu, Y., & Gu, H. (2023). Phycocyanin to biocrude via the integration of isothermal/fast hydrothermal liquefaction and aqueous phase recirculation: Reaction products and process analyses. Fuel, 332. https://doi.org/10.1016/j.fuel.2022.126226

  • Qianshi, S., Wei, Z., Xiaowei, W., Xiaohan, W., Haowen, L., Zixin, Y., Yue, Y., & Guangqian, L. (2023). Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis. Energy, 262. https://doi.org/10.1016/j.energy.2022.125379

  • Ramos, J. S., & Ferreira, A. F. (2022). Techno-economic analysis and life cycle assessment of olive and wine industry co-products valorisation. Renewable and Sustainable Energy Reviews, 155. https://doi.org/10.1016/j.rser.2021.111929

  • Ranzato, M. ’A, Hinton, G., & LeCun, Y. (2015). Guest editorial: Deep learning. In International Journal of Computer Vision (Vol. 113, Issue 1, pp. 1–2). Kluwer Academic Publishers. https://doi.org/10.1007/s11263-015-0813-1

  • Raschka, S. (2020). Model evaluation, model selection, and algorithm selection in machine learning. http://arxiv.org/abs/1811.12808. Accessed 18 Feb 2024.

  • Saeed, M. N., Shahrivar, M., Surywanshi, G. D., Kumar, T. R., Mattisson, T., & Soleimanisalim, A. H. (2023). Production of aviation fuel with negative emissions via chemical looping gasification of biogenic residues: Full chain process modelling and techno-economic analysis. Fuel Processing Technology, 241. https://doi.org/10.1016/j.fuproc.2022.107585

  • Safarian, S., Unnþórsson, R., & Richter, C. (2019). A review of biomass gasification modelling. In Renewable and Sustainable Energy Reviews (Vol. 110, pp. 378–391). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.05.003

  • Safarian, S., Ebrahimi Saryazdi, S. M., Unnthorsson, R., & Richter, C. (2020). Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy, 213. https://doi.org/10.1016/j.energy.2020.118800

  • Safarian, S., Ebrahimi Saryazdi, S. M., Unnthorsson, R., & Richter, C. (2021). Modeling of hydrogen production by applying biomass gasification: Artificial neural network modeling approach. Fermentation, 7(2). https://doi.org/10.3390/fermentation7020071

  • Sajid, M., Raheem, A., Ullah, N., Asim, M., Ur Rehman, M. S., & Ali, N. (2022). Gasification of municipal solid waste: Progress, challenges, and prospects. In Renewable and Sustainable Energy Reviews (Vol. 168). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112815

  • Salem, A. M., Dhami, H. S., & Paul, M. C. (2022). Syngas production and combined heat and power from Scottish agricultural waste gasification—A computational study. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14073745

  • Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 72, pp. 363–384). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.01.038

  • Santoyo-Castelazo, E., Santoyo, E., Zurita-García, L., Camacho Luengas, D. A., & Solano-Olivares, K. (2023). Life cycle assessment of bioethanol production from sugarcane bagasse using a gasification conversion process: Bibliometric analysis, systematic literature review and a case study. Applied Thermal Engineering, 219. https://doi.org/10.1016/j.applthermaleng.2022.119414

  • Saravanan, A., Karishma, S., Senthil Kumar, P., & Rangasamy, G. (2023). A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy. Fuel, 338. https://doi.org/10.1016/j.fuel.2022.127221

  • Sarvamangala, D. R., & Kulkarni, R. V. (2022). Convolutional neural networks in medical image understanding: a survey. In Evolutionary Intelligence (Vol. 15, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s12065-020-00540-3

  • Sedej, O., Mbonimpa, E., Sleight, T., & Slagley, J. (2022). Artificial neural networks and gradient boosted machines used for regression to evaluate gasification processes: A review. Journal of Energy and Power Technology, 4(3), 1–1. https://doi.org/10.21926/jept.2203027

  • Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S., & Park, Y. K. (2022). Recent advances of thermochemical conversieon processes for biorefinery. In Bioresource Technology (Vol. 343). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2021.126109

  • Sezer, S., Kartal, F., & Özveren, U. (2021). Prediction of chemical exergy of syngas from downdraft gasifier by means of machine learning. Thermal Science and Engineering Progress, 26. https://doi.org/10.1016/j.tsep.2021.101031

  • Sezer, S., & Özveren, U. (2021). Investigation of syngas exergy value and hydrogen concentration in syngas from biomass gasification in a bubbling fluidized bed gasifier by using machine learning. International Journal of Hydrogen Energy, 46(39), 20377–20396. https://doi.org/10.1016/j.ijhydene.2021.03.184

    Article  CAS  Google Scholar 

  • Shafizadeh, A., Shahbeig, H., Nadian, M. H., Mobli, H., Dowlati, M., Gupta, V. K., Peng, W., Lam, S. S., Tabatabaei, M., & Aghbashlo, M. (2022). Machine learning predicts and optimizes hydrothermal liquefaction of biomass. Chemical Engineering Journal, 445. https://doi.org/10.1016/j.cej.2022.136579

  • Shahabuddin, M., & Alam, T. (2022). Gasification of solid fuels (coal, biomass and MSW): Overview, challenges and mitigation strategies. In Energies (Vol. 15, Issue 12). MDPI. https://doi.org/10.3390/en15124444

  • Shahabuddin, M., Alam, M. T., Krishna, B. B., Bhaskar, T., & Perkins, G. (2020). A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. In Bioresource Technology (Vol. 312). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2020.123596

  • Shahbeig, H., Shafizadeh, A., Rosen, M. A., & Sels, B. F. (2022). Exergy sustainability analysis of biomass gasification: a critical review. Biofuel Research Journal, 9(1), 1592–1607. https://doi.org/10.18331/BRJ2022.9.1.5

  • Sharkawy, Abdel-Nasser. (2020). Principle of neural network and its main types: Review. Journal of Advances in Applied & Computational Mathematics, 7, 8–19. https://doi.org/10.15377/2409-5761.2020.07.2

    Article  Google Scholar 

  • Sharma, K. G., Kaisare, N. S., & Goyal, H. (2022). A recurrent neural network model for biomass gasification chemistry. Reaction Chemistry and Engineering, 7(3), 570–579. https://doi.org/10.1039/d1re00409c

    Article  CAS  Google Scholar 

  • Sharma, P., Sheth, P. N., & Mohapatra, B. N. (2023). Co-processing of petcoke and producer gas obtained from RDF gasification in a white cement plant: A techno-economic analysis. Energy, 265. https://doi.org/10.1016/j.energy.2022.126248

  • Sidek, F. N., Abdul Samad, N. A. F., & Saleh, S. (2020). Review on effects of gasifying agents, temperature and equivalence ratio in biomass gasification process. IOP Conference Series: Materials Science and Engineering, 863(1). https://doi.org/10.1088/1757-899X/863/1/012028

  • Song, H., Yang, G., Xue, P., Li, Y., Zou, J., Wang, S., Yang, H., & Chen, H. (2022). Recent development of biomass gasification for H2 rich gas production. Applications in Energy and Combustion Science, 10. https://doi.org/10.1016/j.jaecs.2022.100059

  • Sun, C., Ai, L., & Liu, T. (2022). The PSO-ANN modeling study of highly valuable material and energy production by gasification of solid waste: An artificial intelligence algorithm approach. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02342-2

    Article  Google Scholar 

  • Swiecki, Z., Khosravi, H., Chen, G., Martinez-Maldonado, R., Lodge, J. M., Milligan, S., Selwyn, N., & Gašević, D. (2022). Assessment in the age of artificial intelligence. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100075

  • Tang, Q., Chen, Y., Yang, H., Liu, M., Xiao, H., Wu, Z., Chen, H., & Naqvi, S. R. (2020). Prediction of bio-oil yield and hydrogen contents based on machine learning method: Effect of biomass compositions and pyrolysis conditions. Energy and Fuels, 34(9), 11050–11060. https://doi.org/10.1021/acs.energyfuels.0c01893

    Article  CAS  Google Scholar 

  • Taoufik, N., Boumya, W., Achak, M., Chennouk, H., Dewil, R., & Barka, N. (2022). The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. In Science of the Total Environment (Vol. 807). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.150554

  • Taye, M. M. (2023). Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. In Computers (Vol. 12, Issue 5). MDPI. https://doi.org/10.3390/computers12050091

  • Tezer, Ö., Karabağ, N., Öngen, A., Çolpan, C. Ö., & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.02.158

    Article  Google Scholar 

  • Tran, T. T. K., Bateni, S. M., Ki, S. J., & Vosoughifar, H. (2021). A review of neural networks for air temperature forecasting. In Water (Switzerland) (Vol. 13, Issue 9). MDPI AG. https://doi.org/10.3390/w13091294

  • Tullo, A. (2016). Air Products retreats from waste-to-energy. C&EN Global Enterprise, 94(15), 12–12. https://doi.org/10.1021/CEN-09415-NOTW12

    Article  Google Scholar 

  • Ugwu, L. I., Morgan, Y., & Ibrahim, H. (2022). Application of density functional theory and machine learning in heterogenous-based catalytic reactions for hydrogen production. In International Journal of Hydrogen Energy (Vol. 47, Issue 4, pp. 2245–2267). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2021.10.208

  • Umenweke, G. C., Afolabi, I. C., Epelle, E. I., & Okolie, J. A. (2022). Machine learning methods for modeling conventional and hydrothermal gasification of waste biomass: A review. In Bioresource Technology Reports (Vol. 17). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2022.100976

  • Umenweke, G. C., Pace, R. B., Santillan-Jimenez, E., & Okolie, J. A. (2023). Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification. Chemical Engineering Journal, 452. https://doi.org/10.1016/j.cej.2022.139215

  • Understanding Artificial Neural Networks | by Trist’n Joseph | Towards Data Science. (2020). https://towardsdatascience.com/understanding-artificial-neural-networks-3fc3cbcd397d. Accessed 18 Feb 2024.

  • Vamvuka, D., Tzilivakos, P., Afthentopoulos, E., & Chatzifotiadis, H. (2023). Comparative study on the gasification performance of two energy crops by steam or carbon dioxide. Bioresource Technology Reports, 101320. https://doi.org/10.1016/j.biteb.2022.101320

  • Vinitha, N., Vasudevan, J., & Gopinath, K. P. (2022). Bioethanol production optimization through machine learning algorithm approach: Biomass characteristics, saccharification, and fermentation conditions for enzymatic hydrolysis. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03163-z

    Article  Google Scholar 

  • Wang, M. W. H., Goodman, J. M., & Allen, T. E. H. (2021). Machine learning in predictive toxicology: Recent applications and future directions for classification models. In Chemical Research in Toxicology (Vol. 34, Issue 2, pp. 217–239). American Chemical Society. https://doi.org/10.1021/acs.chemrestox.0c00316

  • Wu, Y., Wang, H., Li, H., Han, X., Zhang, M., Sun, Y., Fan, X., Tu, R., Zeng, Y., Xu, C. C., & Xu, X. (2022). Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. In Renewable Energy (Vol. 196, pp. 462–481). Elsevier Ltd. https://doi.org/10.1016/j.renene.2022.07.031

  • Wu, N., Lan, K., & Yao, Y. (2023). An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. Resources, Conservation and Recycling, 188. https://doi.org/10.1016/j.resconrec.2022.106693

  • Yan, B., Li, S., Cao, X., Zhu, X., Li, J., Zhou, S., Zhao, J., Sun, Y., & Chen, G. (2023). Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive. Applied Energy, 333, 120612. https://doi.org/10.1016/j.apenergy.2022.120612

    Article  CAS  Google Scholar 

  • Yan, M., Liu, Y., Song, Y., Xu, A., Zhu, G., Jiang, J., & Hantoko, D. (2022). Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification. Energy, 242. https://doi.org/10.1016/j.energy.2021.123054

  • Yang, J., Li, Y., Tan, H., Bian, J., & Cao, X. (2023). Optimization and analysis of a hydrogen liquefaction process integrated with the liquefied natural gas gasification and organic Rankine cycle. Journal of Energy Storage, 59. https://doi.org/10.1016/j.est.2022.106490

  • Ye, Z., Yang, J., Zhong, N., Tu, X., Jia, J., & Wang, J. (2020). Tackling environmental challenges in pollution controls using artificial intelligence: A review. In Science of the Total Environment (Vol. 699). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.134279

  • Yim, H., Valizadeh, S., Pyo, S., Jang, S.-H., Ko, C. H., Khan, M. A., Jeon, B.-H., Lin, K.-Y.A., & Park, Y.-K. (2023). Hydrogen generation from gasification of woody biomass upon acid mine drainage sludge as a novel catalyst under an air medium. Fuel, 338, 127243. https://doi.org/10.1016/j.fuel.2022.127243

    Article  CAS  Google Scholar 

  • You, A., Kim, J. K., Ryu, I. H., & Yoo, T. K. (2022). Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey. In Eye and Vision (Vol. 9, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40662-022-00277-3

  • Yu, D., Hu, J., Wang, W., & Gu, B. (2023). Comprehensive techno-economic investigation of biomass gasification and nanomaterial based SOFC/SOEC hydrogen production system. Fuel, 333. https://doi.org/10.1016/j.fuel.2022.126442

  • Zalazar-Garcia, D., Fernandez, A., Rodriguez-Ortiz, L., Rodriguez, R., & Mazza, G. (2022). Sustainable slow-pyrolysis simulation of 12 lignocellulosic bio-wastes: CO2 emission, energy, and water consumption. IOP Conference Series: Earth and Environmental Science, 952(1). https://doi.org/10.1088/1755-1315/952/1/012008

  • Zang, G., Zhang, J., Ratner, A., & Shi, Y. (2023). Techno-economic analysis of a cooling, heating, and electricity trigeneration system based on downdraft fixed bed wood and tire gasification: Case study of a campus office building. Sustainable Energy Technologies and Assessments, 55. https://doi.org/10.1016/j.seta.2022.102939

  • Zhai, S., Li, M., Xiong, Y., Wang, D., & Fu, S. (2020). Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion. Bioresource Technology, 316. https://doi.org/10.1016/j.biortech.2020.123903

  • Zhang, Y., Xu, P., Liang, S., Liu, B., Shuai, Y., & Li, B. (2019). Exergy analysis of hydrogen production from steam gasification of biomass: A review. International Journal of Hydrogen Energy, 44(28), 14290–14302. https://doi.org/10.1016/j.ijhydene.2019.02.064

    Article  CAS  Google Scholar 

  • Zhang, B., Guo, S., & Jin, H. (2022). Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results. Energy, 246. https://doi.org/10.1016/j.energy.2022.123306

  • Zhao, S., Li, J., Chen, C., Yan, B., Tao, J., & Chen, G. (2021). Interpretable machine learning for predicting and evaluating hydrogen production via supercritical water gasification of biomass. Journal of Cleaner Production, 316. https://doi.org/10.1016/j.jclepro.2021.128244

  • Zhao, S., Xu, W., & Chen, L. (2022). The modeling and products prediction for biomass oxidative pyrolysis based on PSO-ANN method: An artificial intelligence algorithm approach. Fuel, 312. https://doi.org/10.1016/j.fuel.2021.122966

  • Zheng, C., Zheng, C., Su, M., & Zhao, H. (2023). The competition/inhibition effect of H2O/CO2-char gasification in typical in situ gasification-chemical looping combustion (iG-CLC) conditions via particle-resolved simulation. Fuel, 333, 126316. https://doi.org/10.1016/j.fuel.2022.126316

    Article  CAS  Google Scholar 

  • Zheng, Z.-H., Lin, X.-D., Yang, M., He, Z.-M., Bao, E., Zhang, H., & Tian, Z.-Y. (2020). Progress in the application of machine learning in combustion studies. ES Energy & Environment. https://doi.org/10.30919/esee8c795

  • Ziółkowski, P., Stasiak, K., Amiri, M., & Mikielewicz, D. (2023). Negative carbon dioxide gas power plant integrated with gasification of sewage sludge. Energy, 262. https://doi.org/10.1016/j.energy.2022.125496

Download references

Funding

This study was funded by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa Rectorate. Project number: 37323.

Author information

Authors and Affiliations

Authors

Contributions

Huseyin Kurtulus Ozcan: planning and supervising the work; Fatma Alfarra: investigation; Fatma Alfarra: writing—original draft preparation; Fatma Alfarra, Huseyin Kurtulus Ozcan, and Pınar Cihan designed and edited the figures; Fatma Alfarra, Huseyin Kurtulus Ozcan, Pınar Cihan, Atakan Ongen, Senem Yazıcı Güvenc, and Mirac Nur Ciner: writing—review and editing. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Fatma Alfarra.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfarra, F., Ozcan, H.K., Cihan, P. et al. Artificial intelligence methods for modeling gasification of waste biomass: a review. Environ Monit Assess 196, 309 (2024). https://doi.org/10.1007/s10661-024-12443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12443-2

Keywords

Navigation