Skip to main content

Advertisement

Log in

A combined impact assessment of climate and land use/land cover change in an Eastern Himalayan watershed in northeast India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current study investigates the joint impact of projected land use/land cover change (LULCC) and climate change on the discharge of river Puthimari using Soil and Water Assessment Tool (SWAT). Puthimari, flowing through part of Bhutan and the northeastern region of India, earns its significance by contributing a fairly huge amount of discharge to the mainstream Brahmaputra causing frequent floods downstream, specifically in the monsoon season. The analysis was carried out from 2025 to 2099, by dividing this entire period into three sub-periods, 2025‒2049, 2050‒2074, and 2075‒2099, each of 25 years duration. To evaluate the impact of climate change, this study considered future climate data of five different CMIP5 (Coupled Model Intercomparison Project) climate models and their ensemble for RCP4.5 and RCP8.5 (Representative Concentration Pathways). The changes in LULC were incorporated by projecting the future LULC for 2035, 2065, and 2085 for each of the periods using the CA (Cellular Automata)-Markov model. SWAT performed well for both calibration and validation. The respective Nash-Sutcliffe efficiency (NSE) values for calibration and validation were found to be 0.74 and 0.77. Also, 0.75 and 0.79 coefficient of determination (R2) values were obtained for calibration and validation, respectively. The analyses reveal a 19.76% increase in rural settlement, and a 6.30%, 16.45%, and 8.76% decrease in forest, cropland, and waterbodies in the watershed by the end of this century. The average monsoon rainfall would increase by 14.16% and 38.92%, with a corresponding increase in discharge by 34.27% and 64.67%, under RCP 4.5 and RCP 8.5, respectively. This comprehensive study represents a pioneering effort to thoroughly analyze the future hydrological dynamics of the Puthimari River. This research serves as a vital resource for policymakers and government agencies, offering valuable insights to guide both structural and non-structural measures aimed at safeguarding the river from potential flood devastation. Additionally, it provides essential information to support the implementation of effective watershed management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The generated data is available on request from the corresponding author.

References

  • Aawar, T., & Khare, D. (2020). Assessment of climate change impacts on streamflow through hydrological model using SWAT model: a case study of Afghanistan. Modeling Earth Systems and Environment, 6, 1427–1437.

    Article  Google Scholar 

  • Akhter, J., Das, L., & Deb, A. (2017). CMIP5 ensemble-based spatial rainfall projections over homogenous zones of India. Climate Dynamics, 49(5–6), 1885–1916.

    Article  ADS  Google Scholar 

  • Apurv, T., Mehrotra, R., Sharma, A., Goyal, M. K., & Dutta, S. (2015). Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. Journal of Hydrology, 527, 281–291.

    Article  CAS  Google Scholar 

  • Arnell, N. W., & Lloyd-Hughes, B. (2014). The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Change, 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4

    Article  ADS  Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., et al. (2012). SWAT: model use, calibration, and validation. Transactions of the ASABE., 55(4), 1491–1508.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modelling and assessment, part I: model development. JAWRA Journal of the American Water Resources Association, 34(1), 73–89.

    Article  ADS  CAS  Google Scholar 

  • Arora, V. K., & Boer, G. J. (2001). The effects of simulated climate change on the hydrology of major river basins. Journal of Geophysical Research Atmospheres, 106(D4), 3335–3348.

    Article  Google Scholar 

  • Barman, S., & Bhattacharjya, R. K. (2020). ANN-SCS-based hybrid model in conjunction with GCM to evaluate the impact of climate change on the flow scenario of the River Subansiri. Journal of Water and Climate Change, 11(4), 1150–1164.

    Article  Google Scholar 

  • Batty, M., Xie, Y., & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23, 205–233.

    Article  Google Scholar 

  • Behera, M. D., Borate, S. N., Panda, S. N., Behera, P. R., & Roy, P. S. (2012). Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model – a geo-information-based approach. Journal of Earth system science, 121(4), 1011–1024.

    Article  ADS  Google Scholar 

  • Bhatt, D., & Mall, R. K. (2015). Surface water resources, climate change and simulation modeling. Aquatic Procedia, 4, 730–738.

    Article  Google Scholar 

  • Bormann, H. (2010). Runoff regime changes in german rivers due to climate change. Erdkunde, 64, 257–279.

    Article  Google Scholar 

  • Bosch, J., & Hewlett, J. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23.

    Article  ADS  Google Scholar 

  • Camara, M., Jamil, N., Abdullah, A., & Hashim, R. (2020). Integrating cellular automata Markov model to simulate future land use change of a tropical basin. Global Journal of Environmental Science and Management, 6(3), 403–414.

    Google Scholar 

  • Chandralal, R. W., Bregt, A. K., van Delden, H., et al. (2009). The dynamics of shifting cultivation captured in an extended constrained cellular automata land use model. Ecological Modelling, 220, 2302–2309.

    Article  Google Scholar 

  • Choudhury, B. U., Das, P. T., Nagachan, S. V. et al. (2014). Landuse land cover change detection, soil health assessment and socio-economy in northeast India: a remote sensing and GIS approach. Research Bulletin, National Agricultural Innovative Project (NAIP) Publication No. 7. ICAR Research Complex for NEH Region, Umiam-793 103, Meghalaya, India. pp. 1–53.

  • Costa, M. H., Botta, A., & Cardille, J. A. (2003). Effect of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology, 283, 206–217.

    Article  ADS  Google Scholar 

  • Costa, M. H., & Pires, G. F. (2010). Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. International Journal of Climatology, 30, 1970–1979.

    Article  ADS  Google Scholar 

  • Dash, S. K., Sharma, N., Pattnayak, K. C., Gao, X. J., & Shi, Y. (2012). Temperature and precipitation changes in the north-east India and their future projections. Global and Planetary Change, 98–99, 31–44.

    Article  ADS  Google Scholar 

  • Debnath, J., Das, N., Ahmed, I., & Bhowmik, M. (2017). Channel migration and its impact on land use/land cover using RS and GIS: a study on Khowai River of Tripura, North-East India. The Egyptian Journal of Remote Sensing and Space Sciences, 20, 197–210.

    Article  Google Scholar 

  • Deka, J., Tripathi, O. P., Khan, M. L., & Srivastava, V. J. (2019). Study on land-use and land-cover change dynamics in Eastern Arunachal Pradesh, N.E. India using remote sensing and GIS. Tropical Ecology, 60, 199–208. https://doi.org/10.1007/s42965-019-00022-3

    Article  Google Scholar 

  • Devi, K. (2022). Flood problem of Puthimari River basin: history and present pattern. International Journal of Current Science Research and Review, 5(4), 941–947.

    Article  Google Scholar 

  • Flugel, W. A., Pechstedt, J., Bongartz, K., Bartosch, A., Eriksson, M., and Clark, M. (2008). Analysis of climate change trend and possible impacts in the Upper Brahmaputra River Basin – the BRAHMATWINN Project. In Proceedings of the 13th IWRA World Water Congress 2008, Montpelier, France.

  • Gain, A. K., Immerzeel, W. W., Sperna-Weiland, F. C., & Bierkens, M. F. P. (2011). Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling. Hydrology and Earth System Sciences, 15, 1537–1545.

    Article  ADS  Google Scholar 

  • Ghosh, P., Mukhopadhyay, A., Chanda, A., et al. (2017). Application of cellular automata and Markov-chain model in geospatial environmental modeling-a review. Remote Sensing Applications: Society and Environment, 5, 64–77.

    Article  Google Scholar 

  • Ghosh, S., & Dutta, S. (2012). Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model. Journal of Earth System Science, 121, 637–657.

    Article  ADS  Google Scholar 

  • Ghosh, S., Vittal, H., Sharma, T., Karmakar, S., Kasiviswanathan, K. S., Dhanesh, Y., Sudheer, K. P., & Gunthe, S. S. (2016). Indian summer monsoon rainfall: Implications of contrasting trends in the spatial variability of means and extremes. PLoS ONE, 11(7), e0158670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannaros, T. M., Melas, D., Daglis, I. A., Keramitsoglou, I., & Kourtidis, K. (2013). Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmospheric Environment, 73, 103–111.

    Article  ADS  CAS  Google Scholar 

  • Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 414–415, 40–48. https://doi.org/10.1016/j.jhydrol.2011.10.009

    Article  ADS  Google Scholar 

  • Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology, 28(11), 1453–1469.

    Article  ADS  Google Scholar 

  • Hiese, N., Hiese, Z., Katiry, D., Medo, T., & Hiese, M. (2020). Evaluation of spatio‐temporal aspects of land use and land cover changes in Nagaland, northeast, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 1547–1553. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1547-2020

  • Hirabayashi, Y., Mahendran, R., Koirala, S., et al. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821.

    Article  ADS  Google Scholar 

  • Hisdal, H., Stahl, K., Tallaksen, L. M., & Demuth, S. (2001). Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21, 317–333.

    Article  ADS  Google Scholar 

  • Huang, Y., Yang, B., Wang, M., Liu, B., & Yang, X. (2020). Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences, 79(2). https://doi.org/10.1007/s12665-019-8785-z

  • Indian Network for Climate Change Assessment (INCCA) (2010). Climate change and India: A sectorial and regional analysis for 2030s. Ministry of Environment and Forests, Government of India. https://gbpihed.gov.in/PDF/Publication/Climate_change_4_4.pdf

  • Inland Waterways Authority of India (IWAI). (2015). Final feasibility report on hydrographic survey of Puthimari River, Assam from “confluence with Brahmaputra river near Bamunbori to Ghopla". https://iwai.nic.in/sites/default/files/2536979333NW-82 Final FSR Puthimari River.pdf

  • Intergovernmental Panel on Climate Change (IPCC). (2007). The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Geneva. [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Islam, A. K. M. S., Paul, S., Mohammed, K., Billah, M., Fahad, G. R., Hasan, A., Islam, G. M. T., & Bala, S. K. (2018). Hydrological response to climate change of the Brahmaputra basin using CMIP5 general circulation model ensemble. Journal of Water and Climate Change, 9(3), 434–448.

    Article  Google Scholar 

  • Jamir, T. (2015). Changes in land cover/land use over the northeast region of India. Journal of the Geographical Institute Jovan Cvijic, 65(3), 309–322.

    Google Scholar 

  • Jha, M., Arnold, J. G., Gassman, P. W., Giorgi, F., & Gu, R. R. (2007). Climate change sensitivity assessment on upper Mississippi River basin streamflows using SWAT. Journal of the American Water Resources Association, 42, 997–1015.

    Article  ADS  Google Scholar 

  • Jones, L., & Boyd, E. (2011). Exploring social barriers to adaptation: insights from Western Nepal. Global Environmental Change, 21, 1262–1274. https://doi.org/10.1016/j.gloenvcha.2011.06.002

    Article  Google Scholar 

  • Kayitesi, N. M., Guzha, A. C., & Mariethoz, G. (2022). Impacts of land use land cover change and climate change on river hydro-morphology- a review of research studies in tropical regions. Journal of Hydrology, 615(2022), 128702.

    Article  Google Scholar 

  • Koomen, E., & Borsboom-van Beurden, J. (Eds.) (2011). Land-use modelling in planning practice. GeoJournal Library (vol. 101). Springer. https://doi.org/10.1007/978-94-007-1822-7

  • Kothawale, D. R., & Rajeevan, M. (2017). Monthly, seasonal and annual rainfall time series for all-India, homogenous regions and meteorological subdivisions: 1871-2016. Indian Institute of Tropical Meteorology (IITM). https://www.tropmet.res.in/∼lip/Publication/RR-pdf/RR-138.pdf

  • Kumar, D. (2017). Monitoring and assessment of land use and land cover changes (1977–2010) in Kamrup district of Assam, India using remote sensing and GIS techniques. Applied ecology and environmental research, 15(3), 221–239.

    Article  MathSciNet  Google Scholar 

  • Mahanta C., Zaman A. M., Newaz S. M. S., Rahman S. M. M., Mazumdar T. K., Choudhury R., Borah P. J., & Saikia L. (2014). Physical assessment of the Brahmaputra River— Ecosystem of life: A Bangladesh-India Initiative. International Union for Conservation of Nature (IUCN), Dhaka, Bangladesh.

  • Mfwango, L. H., Ayenew, T., & Mahoo, H. F. (2022). Impacts of climate and land use/cover changes on streamflow at Kibungo sub-catchment Tanzania. Heliyon, 8(11), e11285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirza, M. M. Q. (2002). Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global Environmental Change, 12, 127–138.

    Article  Google Scholar 

  • Mishra, V., Rai, P., & Mohan, K. (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute Jovan Cvijic, SASA, 64(1), 111–127.

    Article  Google Scholar 

  • Mohammed, K., Islam, A. K. M. S., Islam, G. M. T., Alfieri, L., Bala, S. K., & Khan, J. U. (2017). Impact of high-end climate change on floods and low flows of the Brahmaputra River. Journal of Hydrologic Engineering, 22(10), 04017041. https://doi.org/10.1061/(asce)he.1943-5584.0001567

    Article  Google Scholar 

  • Mohapatra, G. N., Beham, A. R., Kavashree, C., Shree, K., Singh, L. M., & Vaishnavi, J. (2018). Study of Indian summer monsoon rainfall trend during the period 1901–2013 through data mining. International Journal for Research in Applied Science and Engineering Technology, 6, 1701–1705.

    Article  Google Scholar 

  • Mousavi, R. S., Ahmedizadeh, M., & Marofi, S. (2018). A multi-GCM assessment of the climate change impact on the hydrology and hydropower potential of a semi-arid basin (A Case Study of the Dez Dam Basin, Iran). Water, 10(10), 1458. https://doi.org/10.3390/w10101458

  • Mwangi, H. M., Julich, S., McDonald, S. D., & Feger, K. H. (2016). Relative contribution of land use change and climate variability on discharge of upper Mara River Kenya. Journal of Hydrology: Regional Studies, 5, 244–260.

    Google Scholar 

  • Nayak, S., Maity, S., Singh, K. S., Nayak, H. P., & Dutta, S. (2021). Influence of the changes in land-use and land cover on temperature over northern and north-eastern India. Land, 10, 52. https://doi.org/10.3390/land10010052

    Article  Google Scholar 

  • Nepal, S., & Shrestha, A. B. (2015). Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature. International Journal of Water Resources Development, 31, 201–218.

    Article  Google Scholar 

  • Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50, 143–175. https://doi.org/10.1023/A:1010616428763

    Article  CAS  Google Scholar 

  • Palash, W., Bajracharya, S. R., Shrestha, A. B., Wahid, S., Hossain, M. S., Mogumder, T. K., & Mazumder, L. C. (2023). Climate change impacts on the hydrology of the Brahmaputra River basin. Climate, 11(1), 18. https://doi.org/10.3390/cli11010018

    Article  Google Scholar 

  • Panhalkar, S. S. (2014). Hydrological modeling using SWAT model and geoinformatic techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 17(2), 197–207.

    Article  Google Scholar 

  • Parker, L., Guerten, N., Nguyen, T. T., Rinzin, C. et al. (2017). Climate change impacts in Bhutan: challenges and opportunities for the agricultural sector. Working Paper No. 191. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). https://doi.org/10.13140/RG.2.2.12802.58569

  • Pervez, M. S., & Henebry, G. M. (2015). Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. Journal of Hydrology: Regional Studies, 3, 285–311.

    Google Scholar 

  • Peterson, L. K., Bergen, K. M., Browna, D. G., et al. (2009). Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. Forest Ecology and Management, 257, 911–922.

    Article  Google Scholar 

  • Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271, 785–788.

    Article  ADS  CAS  Google Scholar 

  • Raymond, P. A., Oh, N. H., Turner, R. E., & Broussard, W. (2008). Anthropogenically enhanced fluxes of water and carbon from Mississippi River. Nature, 451(24), 449–452.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Ritse, V., Basumatary, H., Kulnu, A. S., et al. (2020). Monitoring land use land cover changes in the Eastern Himalayan landscape of Nagaland Northeast India. Environmental Monitoring and Assessment, 192, 711. https://doi.org/10.1007/s10661-020-08674-8

    Article  PubMed  Google Scholar 

  • Ruan, H., Zou, S., Yang, D., Wang, Y., Yin, Z., Lu, Z., Li, F., & Xu, B. (2017). Runoff simulation by SWAT model using high-resolution gridded precipitation in the Upper Heihe River Basin, Northeastern Tibetan Plateau. Water, 9(11), 866. https://doi.org/10.3390/w9110866

  • Saade, J., Atieh, M., Ghanimeh, S. & Golmohammadi, G. (2021). Modeling impact of climate change on surface water availability using SWAT model in a semi-arid basin: Case of El Kalb River, Lebanon. Hydrology, 8(3), 134. https://doi.org/10.3390/hydrology8030134

  • Saharia, A. M., & Sarma, A. K. (2018). Future climate change impact evaluation on hydrologic processes in the Bharalu and Basistha basins using SWAT model. Natural Hazards, 92(3), 1463–1488. https://doi.org/10.1007/s11069-018-3259-2

    Article  Google Scholar 

  • Sarma, J. N. (2004). An overview of the Brahmaputra River system. In: Singh, V.P., Sharma, N., Ojha, C.S.P. (Eds). The Brahmaputra Basin water resources. Water Science and Technology Library (vol. 47). Springer. https://doi.org/10.1007/978-94-017-0540-0_5

  • Sarma, P. K., Sarmah, K., Sarma, K., & Nath, K. K. (2016). Analysis of land use/land cover changes and its future implications in Garo Hill Region of Meghalaya: a geo-spatial approach. International Journal of Innovative Research in Engineering & Management, 3(1), 38–44.

    Google Scholar 

  • Schoonover, J. E., & Lockaby, B. G. (2006). Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia. Journal of Hydrology, 331, 371–382.

    Article  ADS  CAS  Google Scholar 

  • Singh, W. R., Barman, S., Sharma, S. K. et al. (2021). Historical and projected precipitation extremes over Pare watershed in Arunachal Pradesh, India. Applied Water Science, 11, 6. https://doi.org/10.1007/s13201-021-01382-9

  • Singh, W. R., Barman, S., Gogoi, S., Taggu, A., & Kalita, B. (2022). Projected discharge of Dudhnai River: a tributary of the Brahmaputra River. Journal of the Indian Society of Remote Sensing, 51, 2295–2309.

    Article  Google Scholar 

  • Stern, N. (2006). The Stern review: economics of climate change. HM Treasury. http://www.hm-treasury.gov.uk/sternreview_index.htm

  • Subedi, P., Subedi, K., & Thapa, B. (2013). Application of a hybrid cellular automaton-Markov (CA-Markov) model in land-use change prediction: a case study of saddle creek drainage basin Florida. Applied Ecology and Environmental Sciences, 1(6), 126–132.

    Article  Google Scholar 

  • Tadese, S., Soromessa, T., & Bekele, T. (2021). Analysis of the current and future prediction of land use/land cover change using Remote Sensing and the CA-Markov model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. The Scientific World Journal, 2021, 6685045. https://doi.org/10.1155/2021/6685045

  • Taher, M. (1975). Regional basis of agricultural planning in the Brahmaputra Valley. Journal of the North East India Geographical Society, 7(1& 2), 9–18.

    Google Scholar 

  • Tollan, A. (2002). Land use change and floods: what do we need most research or management? Water Science and Technology, 45, 183–190.

    Article  PubMed  Google Scholar 

  • Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth’s Future, 1, 19–32. https://doi.org/10.1002/2013EF000165

    Article  ADS  Google Scholar 

  • Uhe, P. F., Mitchell, D. M., Bates, P. D., Sampson, C. C., Smith, A. M., & Islam, A. S. (2019). Enhanced flood risk with 1.5°C global warming in the Ganges–Brahmaputra–Meghna basin. Environmental Research Letters, 14, 074031.

    Article  ADS  Google Scholar 

  • Viswambharan, N. (2018). Contrasting monthly trends of Indian summer monsoon rainfall and related parameters. Theoretical and Applied Climatology, 137, 2095–2107.

    Article  ADS  Google Scholar 

  • Wakode, H. B., Baier, K., Jha, R., & Azzam, R. (2018). Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad India. International Soil and Water Conservation Research, 2018(6), 51–62.

    Article  Google Scholar 

  • Wang, Y., Jiang, R., Xie, J., Zhao, Y., Yan, D., & Yang, S. (2019). Soil and Water Assessment Tool (SWAT) model: a systemic review. Journal of Coastal Research, 93, 22–30.

    Article  Google Scholar 

  • Wetherald, R. T., & Manabe, S. (2002). Simulation of hydrologic changes associated with global warming. Journal of Geophysical Research, 107(D19), 4379. https://doi.org/10.1029/2001JD001195

  • Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 2501. https://doi.org/10.1038/s41467-021-22702-2

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, B., Yang, D., Zhang, Z., & Kane, D. L. (2009). Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. Journal of Geophysical Research, 114, 1–12.

    Article  Google Scholar 

  • Zhang, X., Yang, H., Zhang, W., Fenicia, F., Peng, H., & Xu, G. (2022). Hydrologic impacts of cascading reservoirs in the middle and lower Hanjiang River basin under climate variability and land use change. Journal of Hydrology: Regional Studies, 44, 101253.

    Google Scholar 

Download references

Acknowledgements

The authors wish to show their appreciation to the Water Resources Department, Government of Assam, India, for providing the hydrological data to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Swapnali Barman and Waikhom Rahul Singh contributed to the study conception and design. Data collection and analyses were performed by Swapnali Barman. The interpretation of the results were performed by Swapnali Barman and Waikhom Rahul Singh. The first draft of the manuscript was written by Swapnali Barman, and Waikhom Rahul Singh, Biman Kalita, and Jaivir Tyagi commented on the previous version of the manuscript.

Corresponding author

Correspondence to Swapnali Barman.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, S., Singh, W.R., Kalita, B. et al. A combined impact assessment of climate and land use/land cover change in an Eastern Himalayan watershed in northeast India. Environ Monit Assess 196, 294 (2024). https://doi.org/10.1007/s10661-024-12433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12433-4

Keywords

Navigation