Skip to main content

Advertisement

Log in

Relationship between the variations in glacier features classified on a large scale with climate variables: a case study of Gangotri Glacier

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in glacier area, glacial lakes, debris cover, and geomorphological features such as debris fans have a significant impact on glacial dynamics. Therefore, precise and timely observation and tracking of glacier surface changes is a necessity. The availability of high spatial resolution remote sensing images has made it viable to analyse the glacier surface changes at a local level. However, with an increase in spatial resolution, the spectral variability increases, giving rise to additional challenges (such as false changes and misregistration) in the change detection process. These challenges can preferably be dealt with using an object-based change detection (OBCD) approach rather than the conventional pixel-based change detection approach. Therefore, this study has proposed an OBCD methodology using high-spatial-resolution remote sensing images to detect changes in glacier features. Variability in glacier features has been further analysed by associating it with important climate variables, that is, air temperature and precipitation. As a case study, the changes in Gangotri Glacier (Uttarakhand Himalayas in India) features have been studied using high-spatial-resolution WorldView-2 and Linear Imaging Self-Scanning System (LISS)-4 images for a 3-year period 2011–2014. The spectral correspondences between glacier surface and non-glacier surface have been handled by considering brightness temperature and slope as ancillary data to improvise their distinction. A change detection accuracy of ~ 84% has been obtained using the OBCD approach. Results further show that the variations in glacier features are in congruence with the climatic observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

ASTER GDEM is a product of Japan’s Ministry of Economy, Trade, and Industry (METI) and NASA and is available at https://doi.org/10.5067/ASTER/ASTGTM.002. Landsat TM and TIRS images courtesy of the US Geological Survey. Landsat 4–5 TM Digital Object Identifier (DOI) number: /https://doi.org/10.5066/F7N015TQ and Landsat 8 TIRS Digital Object Identifier (DOI) number: /https://doi.org/10.5066/F71835S6.

Code availability

Not applicable.

References

  • Afify, H. A. (2011). Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. Alexandria Engineering Journal, 50(2), 187–195. https://doi.org/10.1016/j.aej.2011.06.001

    Article  Google Scholar 

  • Ali, A., Dunlop, P., Coleman, S., Kerr, D., McNabb, R. W., & Noormets, R. (2023). Glacier area changes in Novaya Zemlya from 1986–89 to 2019–21 using object based image analysis in Google Earth Engine. Journal of Glaciology, 69(277), 1305–1316. https://doi.org/10.1017/jog.2023.18

    Article  ADS  Google Scholar 

  • Ali, I., Shukla, A., & Romshoo, S. A. (2017). Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. Geomorphology, 284, 115–129.

    Article  ADS  Google Scholar 

  • Al-Khudhairy, D. H. A., Caravaggi, I., & Giada, S. (2005). Structural damage assessments from Ikonos data using change detection, object-oriented segmentation, and classification techniques. Photogrammetric Engineering and Remote Sensing, 71(7), 825–837. https://doi.org/10.14358/PERS.71.7.825.

  • Anderson, L. S., Armstrong, W. H., Anderson, R. S., Scherler, D., & Petersen, E. (2021). The causes of debris-covered glacier thinning: Evidence for the importance of ice dynamics from Kennicott Glacier, Alaska. Frontiers in Earth Science, 9, 680995. https://doi.org/10.3389/feart.2021.680995

    Article  Google Scholar 

  • Arbiol, R., Zhang, Y., & Palà, V. (2006). Advanced classification techniques: A review. ISPRS Mid-Term Commission VII Symposium “From Pixel to Processes,” 292–296.

  • Arora, M., & Malhotra, J. (2022). Prevalent climate variables during ablation season around Gangotri Glacier. In: B. Phartiyal, R. Mohan, S. Chakraborty, V. Dutta, & A.K. Gupta (eds.) Climate change and environmental impacts: Past, present and future perspective. Society of Earth Scientists Series. Springer, Cham.

  • Arora, H., Ojha, C. S. P., Buytaert, W., Kaushika, G. S., & Sharma, C. (2017). Spatio-temporal trends in observed and downscaled precipitation over Ganga Basin. Hydrology and Earth System Sciences Discussions, 1–19. https://doi.org/10.5194/hess-2017-388.

  • Azam, M. F. (2021). Need of integrated monitoring on reference glacier catchments for future water security in Himalaya. Water Security, 14, 100098.

    Article  Google Scholar 

  • Baatz, M., & Schape, A. (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In J. Strobl, T. Blaschke, & G. Griesbner (Eds.), Angewandte Geographische Informations-Verarbeitung, XII, Heidelberg, 12–23.

  • Bakker, W. H., Feringa, W. F., & et al. (2009). Principles of remote sensing: An introductory textbook. In K. Tempfli, N. Kerle, G. C. Huurneman, & L. L. F. Janssen (eds.). International Institute for Geo-Information Science and Earth Observation (ITC Educational Textbook Series; Vol. 2).

  • Benn, D. I., Wiseman, S., & Hands, K. A. (2001). Growth and drainage of supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal. Nepal. Journal of Glaciology, 47(159), 626–638. https://doi.org/10.3189/172756501781831729

    Article  ADS  Google Scholar 

  • Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., & Wiseman, S. (2012). Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1–2), 156–174. https://doi.org/10.1016/j.earscirev.2012.03.008

    Article  ADS  Google Scholar 

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. https://doi.org/10.1016/j.isprsjprs.2003.10.002

    Article  ADS  Google Scholar 

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2012). Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high resolution remote sensing data. Current Science, 102(3), 489–494.

    Google Scholar 

  • Bhattacharya, A., Bolch, T., Mukherjee, K., Pieczonka, T., Kropáček, J., Buchroithner, M. F., Bhambri, R., Bolch, T., & Chaujar, R. K. (2016). Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. Journal of Glaciology, 62(236), 1115–1133. https://doi.org/10.1017/jog.2016.96

    Article  ADS  Google Scholar 

  • Bhushan, S., Syed, T. H., Kulkarni, A. V., Gantayat, P., & Agarwal, V. (2017). Quantifying changes in the Gangotri glacier of central Himalaya: Evidence for increasing mass loss and decreasing velocity. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5295–5306. https://doi.org/10.1109/JSTARS.2017.2771215

    Article  ADS  Google Scholar 

  • Biddle, D. J. (2015). Mapping debris-covered glaciers in the Cordillera Blanca, Peru: An object-based image analysis approach. Electronic Theses and Dissertations, University of Louisville, Louisville, Kentucky. Paper 2220. https://doi.org/10.18297/etd/2220.

  • Bisht, H., Kotlia, B. S., Kumar, K., et al. (2020). Estimation of the recession rate of Gangotri glacier, Garhwal Himalaya (India) through kinematic GPS survey and satellite data. Environmental Earth Sciences, 79, 329.

    Article  ADS  CAS  Google Scholar 

  • Blaschke, T. (2005). Towards a framework for change detection based on image objects. Göttinger Geographische Abhandlungen, 113, 1–9.

    Google Scholar 

  • Bontemps, S., Bogaert, P., Titeux, N., & Defourny, P. (2008). An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote Sensing of Environment, 112(6), 3181–3191. https://doi.org/10.1016/j.rse.2008.03.013

    Article  ADS  Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections - Revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1036.

    Google Scholar 

  • Chen, G., Hay, G. J., Carvalho, L. M. T., & Wulder, M. A. (2012). Object-based change detection. International Journal of Remote Sensing, 33(14), 4434–4457. https://doi.org/10.1080/01431161.2011.648285

    Article  ADS  Google Scholar 

  • Chughtai, A. H., Abbasi, H., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22, 100482. https://doi.org/10.1016/j.rsase.2021.100482

    Article  Google Scholar 

  • Compagno, L., Huss, M., Miles, E. S., McCarthy, M. J., Zekollari, H., Dehecq, A., Pellicciotti, F., & Farinotti, D. (2022). Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: An application to High Mountain Asia. The Cryosphere, 16, 1697–1718. https://doi.org/10.5194/tc-16-1697-2022

    Article  ADS  Google Scholar 

  • Dai, X. (1998). The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing, 36(5 PART 1), 1566–1577. https://doi.org/10.1109/36.718860.

  • Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1–2), 1–11. https://doi.org/10.1016/j.rse.2006.01.013

    Article  ADS  Google Scholar 

  • Di, K., Liu, Y., Hu, W., Yue, Z., & Liu, Z. (2014). Mars surface change detection from multi-temporal orbital images. IOP Conference Series: Earth and Environmental Science, 17(1), 12015. https://doi.org/10.1088/1755-1315/17/1/012015

    Article  Google Scholar 

  • Foody, G. M., & Arora, M. K. (1996). Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications. Pattern Recognition Letters, 17, 1389–1398.

    Article  ADS  Google Scholar 

  • Gajurel, A. P., Hubbard, M. S., Giri, B., Elmore, A. C., Maka, S., Rafter, P. A., Putnam, A. E., Elvin, S., Tait, A., & Mayewski, P. A. (2021). Climatic and tectonic significance of Taboche Lake, Khumbu Region, Nepal. Iscience, 24(5), 102418. https://doi.org/10.1016/j.isci.2021.102418

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18. https://doi.org/10.1038/s41597-020-0453-3

    Article  Google Scholar 

  • Huang, J., Wan, Y., & Shen, S. (2009). An object-based approach for forest-cover change detection using multi-temporal high-resolution remote sensing data. Proceedings - 2009 International Conference on Environmental Science and Information Application Technology, ESIAT 2009, 1, 481–484. https://doi.org/10.1109/ESIAT.2009.163

  • Jabari, S., & Zhang, Y. (2016). Building change detection using multi-sensor and multi-view-angle imagery. IOP Conference Series: Earth and Environmental Science, 34(1). https://doi.org/10.1088/1755-1315/34/1/012018

  • Jawak, S. D., Wankhede, S. F., & Luis, A. J. (2019). Explorative study on mapping surface facies of selected glaciers from Chandra Basin, Himalaya using WorldView-2 data. Remote Sens., 11(10), 1207. https://doi.org/10.3390/rs11101207

    Article  ADS  Google Scholar 

  • Jawak, S. D., Wankhede, S. F., Luis, A. J., & Balakrishna, K. (2022a). Impact of image-processing routines on mapping glacier surface facies from Svalbard and the Himalayas using pixel-based methods. Remote Sens., 14(6), 1414. https://doi.org/10.3390/rs14061414

    Article  ADS  Google Scholar 

  • Jawak, S. D., Wankhede, S. F., Luis, A. J., & Balakrishna, K. (2022b). Effect of image-processing routines on geographic object-based image analysis for mapping glacier surface facies from Svalbard and the Himalayas. Remote Sens., 14(17), 4403. https://doi.org/10.3390/rs14174403

    Article  ADS  Google Scholar 

  • Jawak, S. D., Wankhede, S. F., Luis, A. J., & Balakrishna, K. (2022c). Multispectral characteristics of glacier surface facies (Chandra-Bhaga Basin, Himalaya, and Ny-Ålesund, Svalbard) through investigations of pixel and object-based mapping using variable processing routines. Remote Sens., 14(24), 6311. https://doi.org/10.3390/rs14246311

    Article  ADS  Google Scholar 

  • Jones, D. B., Harrison, S., & Anderson, K. (2019). Mountain glacier-to-rock glacier transition. Global and Planetary Change, 181, 102999. https://doi.org/10.1016/j.gloplacha.2019.102999

    Article  Google Scholar 

  • Kaimin, S., Deren, L., Haigang, S., Junyi, L., & Guorui, M. (2012). Object-level change detection based on high-resolution remote-sensing images and its application in Japanese earthquake on March 11, 2011. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 249–256. https://doi.org/10.5194/isprsannals-I-7-249-2012

    Article  Google Scholar 

  • Kargel, J. S., Cogley, J. G., Leonard, G. J., Haritashya, U., & Byers, A. (2011). Himalayan glaciers: The big picture is a montage. Proceedings of the National Academy of Sciences of the United States of America, 108(36), 14709–14710. https://doi.org/10.1073/pnas.1111663108

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Keerthi, V., & Kumar, A. S. (2011). At-sensor solar exo-atmospheric irradiance, Rayleigh Optical thickness and spectral parameters of RS-2 sensors. NRSC/SDAPSA/DQEPQCD/RS-2/TN.

  • Kendall, M. G. (1975). Rank correlation methods. Charles Griffin.

    Google Scholar 

  • Lone, J. M., Masilamani, P., & Khan, M. A. Q. (2018). Evaluation of automated and manual methods for measuring change in Kolahio Glacier using geospatial technology. Asian Journal of Science and Technology, 09, 8475–8484.

    Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. International Journal of Remote Sensing, 23(13), 2651–2671. https://doi.org/10.1080/01431160110109642

    Article  ADS  Google Scholar 

  • Maclean, M.G., & Congalton, R.G. (2012). Map accuracy assessment issues when using an object-oriented approach. Proceedings of the American Society for Photogrammetry and Remote Sensing 2012 Annual Conference, Sacramento, CA, USA, 19–23 March 2012.

  • Man, Q. X., Guo, H. D., Liu, G., & Dong, P. L. (2014). Comparison of different methods for monitoring glacier changes observed by Landsat images. In IOP Conference Series: Earth and Environmental Science, 17, 012127.

    Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  MathSciNet  Google Scholar 

  • Miller, O., Pikaz, A., & Averbuch, A. (2005). Objects based change detection in a pair of gray-level images. Pattern Recognition, 38(11), 1976–1992. https://doi.org/10.1016/j.patcog.2004.07.010

    Article  ADS  Google Scholar 

  • Mitkari, K. V., Arora, M. K., & Tiwari, R. K. (2017). Extraction of glacial lakes in Gangotri Glacier using object-based image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5275–5283. https://doi.org/10.1109/JSTARS.2017.2727506

    Article  Google Scholar 

  • Mitkari, K. V, Arora, M. K., & Tiwari, R. K. (2018). Detecting glacier surface changes using object-based change detection. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 5180–5183. https://doi.org/10.1109/IGARSS.2018.8519230

  • Mitkari, K. V., Sofat, S., Arora, M. K., & Tiwari, R. K. (2023). Linking changes in Gangotri Glacier features derived at a large-scale with climate variability, EGU General Assembly 2023, EGU23-252, https://doi.org/10.5194/egusphere-egu23-252.

  • Muhammad, S., Gul, C., Javed, A., Muneer, J., & Waqar, M. M. (2013). Comparison of glacier change detection using pixel based and object based classification techniques. International Geoscience and Remote Sensing Symposium (IGARSS), 4118–4121. https://doi.org/10.1109/IGARSS.2013.6723739

  • Naithani, A. K., Nainwal, H. C., Sati, K. K., & Prasad, C. (2001). Geomorphological evidences of retreat of the Gangotri glacier and its characteristics. Current Science, 80(1), 87–94.

    Google Scholar 

  • Narama, C., Kääb, A., Duishonakunov, M., & Abdrakhmatov, K. (2010). Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data. Global and Planetary Change, 71(1–2), 42–54. https://doi.org/10.1016/j.gloplacha.2009.08.002

    Article  ADS  Google Scholar 

  • Negi, H. S., Saravana, G., Rout, R., & Snehmani. (2013). Monitoring of Great Himalayan Glaciers in Patsio region, India using remote sensing and climatic observations. Current Science, 105, 1383–1392.

    Google Scholar 

  • Negi, H. S., Thakur, N. K., Ganju, A., & Snehmani. (2012). Monitoring of Gangotri Glacier using remote sensing and ground observations. Journal of Earth System Science, 121(4), 855–866.https://doi.org/10.1007/s12040-012-0199-1

  • Owen, L. A., & Sharma, M. C. (1998). Rates and magnitudes of paraglacial fan formation in the Garhwal Himalaya: Implications for landscape evolution. Geomorphology, 26(1–3), 171–184. https://doi.org/10.1016/S0169-555X(98)00057-9

    Article  ADS  Google Scholar 

  • Park, N. W., & Chi, K. H. (2008). Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. International Journal of Remote Sensing, 29(1), 247–264. https://doi.org/10.1080/01431160701227661

    Article  ADS  Google Scholar 

  • Patel, A., Prajapati, R., Dharpure, J. K., Mani, S., & Chauhan, D. (2019). Mapping and monitoring of glacier areal changes using multispectral and elevation data: A case study over Chhota-Shigri glacier. Earth Science Informatics, 12, 489–499.

    Article  Google Scholar 

  • Paul, F., Winsvold, S. H., Kääb, A., Nagler, T., & Schwaizer, G. (2016). Glacier remote sensing using Sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sensing, 8(7). https://doi.org/10.3390/rs8070575

  • Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., ..., & Birkmann, J. (2022). Climate change 2022: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009325844

  • Racoviteanu, A. E., Arnaud, Y., Williams, M. W., & Manley, W. F. (2015). Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga-Sikkim area, Eastern Himalaya. The Cryosphere, 9, 505–523.

    Article  ADS  Google Scholar 

  • Racoviteanu, A., & Williams, M. W. (2012). Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, eastern Himalaya. Remote Sensing, 4(10). https://doi.org/10.3390/rs4103078

  • Racoviteanu, A. E., Glasser, N. F., Robson, B. A., Harrison, S., Millan, R., Kayastha, R. B., & Kayastha, R. (2022). Recent evolution of glaciers in the Manaslu Region of Nepal from satellite imagery and UAV data (1970–2019). Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.767317

  • Rai, P. K., Mohan, K., Mishra, V. N., Biswari, M., Sharma, A., & Rai, S. (2016). Changing regimes of Gangotri and surrounding glaciers: A case study of Garhwal Himalaya, India. Remote Sensing Applications: Society and Environment, 3, 53–72. https://doi.org/10.1016/j.rsase.2016.02.001

    Article  Google Scholar 

  • Raina, V. (2009). Himalayan glaciers: A state-of-art review of glacial studies, glacial retreat and climate change. In MoEF Discussion Paper.

  • Raza, I. U. R., Kazmi, S. S. A., Ali, S. S., & Hussain, E. (2012). Comparison of Pixel-based and Object-based classification for glacier change detection. Proceedings of the 2nd International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2012, 259–262. https://doi.org/10.1109/EORSA.2012.6261178

  • Reynolds, J. M. (2000). On the formation of supraglacial lakes on debris-covered glaciers. International Association of Hydrological Sciences, 264, 153–161.

    Google Scholar 

  • Reynolds, J. M. (2014). Assessing glacial hazards for hydro development in the Himalayas, Hindu Kush and Karakoram. Hydropower Dams, 2, 60–65.

    Google Scholar 

  • Robson, B. A., Nuth, C., Dahl, S. O., Hölbling, D., Strozzi, T., & Nielsen, P. R. (2015). Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372–387.

    Article  ADS  Google Scholar 

  • Robson, B. A., Hölbling, D., Nuth, C., Strozzi, T., & Dahl, S. O. (2016). Decadal scale changes in Glacier area in the Hohe Tauern national park (Austria) determined by object-based image analysis. Remote Sensing, 8(1). https://doi.org/10.3390/rs8010067

  • Sahu, R., & Gupta, R. D. (2018). Conceptual framework of combined pixel and object-based method for delineation of debris-covered glaciers. ISPRS International Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-5, 173–180, https://doi.org/10.5194/isprs-annals-IV-5-173-2018.

  • Sahu, R., & Gupta, R. D. (2020). Glacier mapping and change analysis in Chandra basin, Western Himalaya, India during 1971–2016. International Journal of Remote Sensing, 41, 6914–6945.

    Article  ADS  Google Scholar 

  • Sakai, A., Takeuchi, N., Fujita, K., & Nakawo, M. (2000). Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. International Association of Hydrological Sciences, 264, 119–130.

    Google Scholar 

  • Salim, M., & Pandey, A. C. (2021). Estimation of temporal snowmelt runoff using geospatial technique in Gangotri Glacier basin, Uttarakhand, India. Remote Sensing Applications: Society and Environment, 24, 100660.

    Article  Google Scholar 

  • Saraswat, P., Syed, T. H., Famiglietti, J. S., Fielding, E. J., Crippen, R., & Gupta, N. (2013). Recent changes in the snout position and surface velocity of Gangotri Glacier observed from space. International Journal of Remote Sensing, 34(24), 8653–8668. https://doi.org/10.1080/01431161.2013.845923

    Article  ADS  Google Scholar 

  • Satendra, D. R., Gupta, A. K., Naik, V. K., Roy, T. K. S., Sharma, A. K., & Dwivedi, M. (2015). Uttarakhand Disaster 2013. National Institute of Disaster Management, New Delhi, 3–7.

  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3), 156–159. https://doi.org/10.1038/ngeo1068

    Article  ADS  CAS  Google Scholar 

  • Sen, P. K. (1968). Journal of the American Statistical Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  MathSciNet  Google Scholar 

  • Serra, P., Pons, X., & Saurí, D. (2003). Post-classification change detection with data from different sensors: Some accuracy considerations. International Journal of Remote Sensing, 24(16), 3311–3340. https://doi.org/10.1080/0143116021000021189

    Article  ADS  Google Scholar 

  • Sharda, S., & Srivastava, M. (2020). Object-based glacier surface change detection using multispectral satellite data. 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). https://doi.org/10.1109/UPCON50219.2020.9376524

  • Shukla, A., & Ali, I. (2016). A hierarchical knowledge-based classification for glacier terrain mapping: a case study from Kolahoi Glacier, Kashmir Himalaya. Annals of Glaciology, 57(71). https://doi.org/10.3189/2016AoG71A046

  • Singh, D. S., Tangri, A. K., Kumar, D., Dubey, C. A., & Bali, R. (2017). Pattern of retreat and related morphological zones of Gangotri Glacier, Garhwal Himalaya, India. Quaternary International, 444, 172–181. https://doi.org/10.1016/j.quaint.2016.07.025

    Article  ADS  Google Scholar 

  • Singh, D. S., Mishra, A. (2001). Gangotri glacier characteristics, retreat and processes of sedimentation in the Bhagirathi valley. Geological Survey of India Special Publication.

  • Singh, D. K., Gusain, H. S., Dewali, S. K., Tiwari, R. K., & Taloor, A. K. (2021). Analysis of snow dynamics in Beas River Basin, Western Himalaya Using Combined Terra--Aqua MODIS improved snow product and in situ data during twenty-first century. In A. K. Taloor, B. S. Kotlia, & K. Kumar (Eds.), Water, Cryosphere, and Climate Change in the Himalayas: A Geospatial Approach. Springer International Publishing, 115–128. https://doi.org/10.1007/978-3-030-67932-3_7

  • Singh, D., Zhu, Y., Liu, S., Srivastava, P. K., Dharpure, J. K., Chatterjee, D., ... & Gagnon, A. S. (2022). Exploring the links between variations in snow cover area and climatic variables in a Himalayan catchment using earth observations and CMIP6 climate change scenarios. Journal of Hydrology, 608, 127648.

  • Srivastava, D. (2004). Recession of Gangotri Glacier. Geological Survey of India, 80, 21–32.

    Google Scholar 

  • Srivastava, D. (2012). Status Report on Gangotri Glacier. Science and Engineering Research Board, Department of Science and Technology, New Delhi, Himalayan Glaciology Technical Report, 3, 21–25.

  • Thakur, P. K., et al. (2023a). Gangotri glacier dynamics from multi-sensor SAR and optical data. Advances in Space Research, 72, 309–326.

    Article  ADS  Google Scholar 

  • Thakur, P. K., Pandey, P., & Chauhan, P. (2023b). Assessment of dynamics of frontal part of Gangotri Glacier, India, from 2017 to 2021 using remote sensing data. Journal of the Indian Society of Remote Sensing, 51, 691–698.

    Article  Google Scholar 

  • Thomas, D. J., Robson, B. A., & Racoviteanu, A. E. (2023). An integrated deep learning and object-based image analysis approach for mapping debris-covered glaciers. Frontiers in Remote Sensing, 4, 1161530. https://doi.org/10.3389/frsen.2023.1161530

    Article  Google Scholar 

  • Tiwari, R. K., Garg, P. K., Saini, V., & Shukla, A. (2016). Comparisons of different methods for debris covered glacier classification. In R. Khanbilvardi, A. Ganju, A. S. Rajawat, & J. M. Chen (Eds.), Land Surface and Cryosphere Remote Sensing III. SPIE, 9877, 206–212. https://doi.org/10.1117/12.2227115

  • United Nations Office for Disarmament Affairs. (2020). Human Cost of Disasters. In Human Cost of Disasters: An overview of the last 20 years (2000–2019). https://doi.org/10.18356/79b92774-en

  • Updike, T., Comp, C. (2010). Radiometric Use of WorldView-2 Imagery. Technical Note, Rev, 1, DigitalGlobe Longmont, CO, USA, 1–15.

  • Vishwakarma, B. D., Ramsankaran, R. A. A. J., Azam, M. F., Bolch, T., Mandal, A., Srivastava, S., ... & Bamber, J. (2022). Challenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resources. Frontiers in Water4, 909246.

  • Xiao, P., Zhang, X., Wang, D., Yuan, M., Feng, X., & Kelly, M. (2016). Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 402–414. https://doi.org/10.1016/j.isprsjprs.2016.07.003

    Article  ADS  Google Scholar 

  • Yousuf, B., Shukla, A., Arora, M. K., & Jasrotia, A. S. (2019). Glacier facies characterization using optical satellite data: Impacts of radiometric resolution, seasonality, and surface morphology. Progress in Physical Geography, 43(4), 473–495. https://doi.org/10.1177/0309133319840770

    Article  ADS  Google Scholar 

  • Yousuf, B., Shukla, A., & Arora, M. K. (2022). Temporal variability of the Satopanth Glacier facies at sub-pixel scale, Garhwal Himalaya, India. In Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition, Sustainable Development Goals Series, Springer, Cham, 207–218. https://doi.org/10.1007/978-3-030-70238-0_5

  • Zemp, M., Roer, I., Kääb, A., Hoelzle, M., Paul, F., & Haeberli, W. (2008). Global glacier changes: Facts and figures contents. Zurich: UNEP, World Glacier Monitoring Service (WGMS) https://wgms.ch/downloads/published/other_reports/wgms_2008_ggc.pdf

  • Zhang, J., Jia, L., Menenti, M., & Hu, G. (2019). Glacier facies mapping using a machine-learning algorithm: The Parlung Zangbo Basin case study. Remote Sensing, 11(4), 452. https://doi.org/10.3390/rs11040452

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is an extension of the author’s own published work from conferences: https://doi.org/https://doi.org/10.1109/IGARSS.2018.8519230 and https://doi.org/https://doi.org/10.5194/egusphere-egu23-252. Kavita Vaijanath Mitkari is thankful to Dr. Hemendra Gusain, a scientist at the Institute of Technology Management (Defence Research and Development Organisation), Mussoorie, Uttarakhand, India, for his valuable suggestions during the project execution. We are grateful to all the anonymous reviewers including the reviewers of the special issue ‘Recent advances in remote sensing for sustainable environment’ for their constructive comments which has improved the quality of this paper.

Funding

This research was funded by the Science and Engineering Research Board, Department of Science and Technology, Government of India (Grant number SB/DGH/59/2013).

Author information

Authors and Affiliations

Authors

Contributions

KVM, SS, MKA, and RKT conceptualised the work. Methodology formulation, data processing, and analysis were performed by KVM. KVM and RKT further investigated the results, and MKA supported the analysis. The required resources were provided by SS and RKT. The original draft manuscript was written by KVM. The manuscript was reviewed and edited by SS, MKA, and RKT. The data processing and change analysis were conducted at Punjab Engineering College (Deemed to be University), Chandigarh, India. Experiments to link the changes in glacier features with climate variables, including writing and editing the manuscript, were performed at Geomatics Engineering Lab, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.

Corresponding author

Correspondence to Kavita Vaijanath Mitkari.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on ‘Ethical responsibilities of Authors’ as found in the Instructions for Authors.

Competing interests

No competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitkari, K.V., Sofat, S., Arora, M.K. et al. Relationship between the variations in glacier features classified on a large scale with climate variables: a case study of Gangotri Glacier. Environ Monit Assess 196, 254 (2024). https://doi.org/10.1007/s10661-024-12417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12417-4

Keywords

Navigation