Skip to main content
Log in

Occurrence of antibiotics and antibiotic-resistant bacteria in the Lebanese polluted Litani River

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Antibiotic contamination in polluted rivers is well recognized as an environmental and public health challenge. In this study, the occurrence, distribution, and ecological risk assessment of three commonly used antibiotics (amoxicillin, ciprofloxacin, and azithromycin) were assessed in the Litani River, the most important and highly polluted river in Lebanon. Physicochemical and microbiological water quality parameters including the antibiotic-resistant ones were in parallel determined in the same sites. Water samples from five sites stretching across the river upper basin were analyzed for the antibiotics under study using high-performance liquid chromatography, with both fluorometric and UV detectors post-extraction using a solid-phase method with a hydrophilic-lipophilic balance cartridges. The disc diffusion method and standardized water quality methods were used for antibiotic-resistant bacteria and water quality assessment, respectively. Amoxicillin and ciprofloxacin were found at concentrations of 250 ng/L and 107.2 ng/L, while azithromycin was not detected in any of the sites under study. Varying levels of antibiotic resistance were detected with the isolated Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) while the total coliforms showed resistance to multiple antibiotics. COD, TP, PO43-, TN, NO3-, NH4 + , E. coli, total coliform, P. aeruginosa, and Cd levels surpassed permissible levels. Correlation analysis with water quality parameters (COD, total phosphate, phosphate, total nitrogen, and cadmium) showed a significant positive correlation with ciprofloxacin (r > 0.5, p value < 0.05). Also, the resistant P. aeruginosa showed a significant positive correlation with cadmium (r > 0.5, p value < 0.05) while the resistant E. coli was positively correlated with total nitrogen, nitrate, and lead levels (r > 0.5, p value < 0.05). The ecological risk assessment revealed that all the tested antibiotics pose low risks (ecological risk quotient RQ < 0.1) except ciprofloxacin, which could pose a medium risk (0.1 < RQ < 1). Future research concerning the long-term assessment of antibiotics’ residues and the identification of resistance genes in the river is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abbas, S. Z., Rafatullah, M., Ismail, N., & Lalung, J. (2014). Isolation, identification, and characterization of cadmium resistant Pseudomonas sp. M3 from industrial wastewater. Journal of Waste Management, 2014, e160398. https://doi.org/10.1155/2014/160398

  • Abu-Sini, M. K., Maharmah, R. A., Abulebdah, D. H., & Al-Sabi, M. N. S. (2023). Isolation and identification of coliform bacteria and multidrug-resistant Escherichia coli from water intended for drug compounding in community pharmacies in Jordan. Healthcare, 11(3), 299. https://doi.org/10.3390/healthcare11030299

    Article  Google Scholar 

  • APHA. Apha-water-testing-standard-methods-introduction-white-paper.pdf. (1999).

  • Aristizábal-Hoyos, A. M., Rodríguez, E. A., Arias, L., & Jiménez, J. N. (2019). High clonal diversity of multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in a wastewater treatment plant. Journal of Environmental Management, 245, 37–47. https://doi.org/10.1016/j.jenvman.2019.05.073

    Article  CAS  Google Scholar 

  • Arun, S., Xin, L., Gaonkar, O., Neppolian, B., Zhang, G., & Chakraborty, P. (2022). Antibiotics in sewage treatment plants, receiving water bodies and groundwater of Chennai city and the suburb, South India: Occurrence, removal efficiencies, and risk assessment. Science of the Total Environment, 851, 158195. https://doi.org/10.1016/j.scitotenv.2022.158195

    Article  CAS  Google Scholar 

  • Ayandiran, T. A., Ayandele, A. A., Dahunsi, S. O., & Ajala, O. O. (2014). Microbial assessment and prevalence of antibiotic resistance in polluted Oluwa River, Nigeria. The Egyptian Journal of Aquatic Research, 40(3), 291–299. https://doi.org/10.1016/j.ejar.2014.09.002

    Article  Google Scholar 

  • Badawy, S., Yang, Y., Liu, Y., Marawan, M. A., Ares, I., Martinez, M.-A., Martínez-Larrañaga, M.-R., Wang, X., Anadón, A., & Martínez, M. (2021). Toxicity induced by ciprofloxacin and enrofloxacin: Oxidative stress and metabolism. Critical Reviews in Toxicology, 51(9), 754–787. https://doi.org/10.1080/10408444.2021.2024496

    Article  CAS  Google Scholar 

  • Basic Information about Lead in Drinking Water | US EPA. (2023). From https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water

  • Bengtsson-Palme, J., & Larsson, D. G. J. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149. https://doi.org/10.1016/j.envint.2015.10.015

    Article  CAS  Google Scholar 

  • Bhagat, C., Kumar, M., Tyagi, V. K., & Mohapatra, P. K. (2020). Proclivities for prevalence and treatment of antibiotics in the ambient water: A review. Npj Clean Water, 3(1), 42. https://doi.org/10.1038/s41545-020-00087-x

    Article  Google Scholar 

  • Booij, K., & Smedes, F. (2010). An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environmental Science & Technology, 44(17), 6789–6794. https://doi.org/10.1021/es101321v

    Article  CAS  Google Scholar 

  • Canal, N., Meneghetti, K. L., de Almeida, C. P., da Rosa Bastos, M., Otton, L. M., & Corção, G. (2016). Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Brazilian Journal of Microbiology, 47(2), 337–344. https://doi.org/10.1016/j.bjm.2016.01.015

    Article  CAS  Google Scholar 

  • Chen, Y., Chen, H., Zhang, L., Jiang, Y., Gin, K., & He, Y. (2018). Occurrence, distribution, and risk assessment of antibiotics in a subtropical river-reservoir system. Water, 10(2), 104. https://doi.org/10.3390/w10020104

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute. CLSI-2020.pdf. (2020). Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute. https://www.clsi.org/

  • Dagher, L. A., Hassan, J., Kharroubi, S., Jaafar, H., & Kassem, I. I. (2021). Nationwide assessment of water quality in rivers across Lebanon by quantifying fecal indicators densities and profiling antibiotic resistance of Escherichia coli. Antibiotics, 10(7), 883. https://doi.org/10.3390/antibiotics10070883

    Article  CAS  Google Scholar 

  • Darwish, T., Shaban, A., Masih, I., Jaafar, H., Jomaa, I., & Simaika, J. P. (2021). Sustaining the ecological functions of the Litani River Basin, Lebanon. International Journal of River Basin Management, 0(0), 1–15. https://doi.org/10.1080/15715124.2021.1885421

  • Diwan, V., Tamhankar, A. J., Khandal, R. K., Sen, S., Aggarwal, M., Marothi, Y., Iyer, R. V., Sundblad-Tonderski, K., & Stålsby-Lundborg, C. (2010). Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain India. BMC Public Health, 10, 414. https://doi.org/10.1186/1471-2458-10-414

    Article  CAS  Google Scholar 

  • Duong, H. A., Phung, T. V., Nguyen, T. N., Phan Thi, L.-A., & Pham, H. V. (2021). Occurrence, distribution, and ecological risk assessment of antibiotics in selected urban lakes of Hanoi Vietnam. Journal of Analytical Methods in Chemistry, 2021, 1–13. https://doi.org/10.1155/2021/6631797

    Article  CAS  Google Scholar 

  • Eid-Sabbagh, K., Roukoz, S., Nassif, M.-H., Velpuri, N., & Mateo-Sagasta, J. (2022). Analysis of water reuse potential for irrigation in Lebanon. International Water Management Institute (IWMI)https://doi.org/10.5337/2022.211

  • Elizalde-Velázquez, A., Gómez-Oliván, L. M., Galar-Martínez, M., Islas-Flores, H., Dublán-García, O., SanJuan-Reyes, N., Elizalde-Velázquez, A., Gómez-Oliván, L. M., Galar-Martínez, M., Islas-Flores, H., Dublán-García, O., & SanJuan-Reyes, N. (2016). Amoxicillin in the aquatic environment, its fate and environmental risk. In Environmental health risk—Hazardous factors to living species. IntechOpen. https://doi.org/10.5772/62049

  • EUCAST: EUCAST.From https://www.eucast.org/

  • Guidance on information requirements and chemical safety assessment—ECHA.From https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment

  • Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zou, H., Ottoson, J., Nilsson, L. E., Berglund, B., Dyar, O. J., Tamhankar, A. J., & Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in Eastern China: Its potential for resistance development and ecological and human risk. Environment International, 114, 131–142. https://doi.org/10.1016/j.envint.2018.02.003

    Article  CAS  Google Scholar 

  • Haydar, C. M., Nehme, N., Awad, S., Koubaissy, B., Fakih, M., Yaacoub, A., Toufaily, J., Villeras, F., & Hamieh, T. (2014). Water quality of the upper Litani River Basin, Lebanon. Physics Procedia, 55, 279–284. https://doi.org/10.1016/j.phpro.2014.07.040

    Article  CAS  Google Scholar 

  • Huang, L., Mo, Y., Wu, Z., Rad, S., Song, X., Zeng, H., Bashir, S., Kang, B., & Chen, Z. (2020). Occurrence, distribution, and health risk assessment of quinolone antibiotics in water, sediment, and fish species of Qingshitan reservoir South China. Scientific Reports, 10(1), 15777. https://doi.org/10.1038/s41598-020-72324-9

    Article  CAS  Google Scholar 

  • Jjemba, P. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and Environmental Safety, 63, 113–130. https://doi.org/10.1016/j.ecoenv.2004.11.011

    Article  CAS  Google Scholar 

  • Jones, K. C., & de Voogt, P. (1999). Persistent organic pollutants (POPs): State of the science. Environmental Pollution (Barking, Essex: 1987), 100(1–3), 209–221. https://doi.org/10.1016/s0269-7491(99)00098-6

  • Kawabe, M., & Kawabe, M. (1997). Factors determining chemical oxygen demand in Tokyo Bay. Journal of Oceanography, 53.

  • Kelly, K. R., & Brooks, B. W. (2018). Global aquatic hazard assessment of ciprofloxacin: Exceedances of antibiotic resistance development and ecotoxicological thresholds. Progress in Molecular Biology and Translational Science, 159, 59–77. https://doi.org/10.1016/bs.pmbts.2018.07.004

    Article  Google Scholar 

  • Khan, G. A., Berglund, B., Khan, K. M., Lindgren, P.-E., & Fick, J. (2013). Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities—A study in Pakistan. PLoS One, 8(6), e62712. https://doi.org/10.1371/journal.pone.0062712

    Article  CAS  Google Scholar 

  • Koubaissy, B. (2014). Physiochemical and microbial assessment of water quality in the Upper Litani River Basin, Lebanon. 4.

  • Kümmerer, K. (2009). Antibiotics in the aquatic environment—A review—Part II. Chemosphere, 75(4), 435–441. https://doi.org/10.1016/j.chemosphere.2008.12.006

    Article  CAS  Google Scholar 

  • Larsson, D. G. J. (2014). Antibiotics in the environment. Upsala Journal of Medical Sciences, 119(2), 108. https://doi.org/10.3109/03009734.2014.896438

    Article  Google Scholar 

  • Maghsodian, Z., Sanati, A. M., Mashifana, T., Sillanpää, M., Feng, S., Nhat, T., & Ramavandi, B. (2022). Occurrence and distribution of antibiotics in the water, sediment, and biota of freshwater and marine environments: A review. Antibiotics, 11(11), 1461. https://doi.org/10.3390/antibiotics11111461

    Article  CAS  Google Scholar 

  • Mahmood, A. R., Al-Haideri, H. H., & Hassan, F. M. (2019). Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Advances in Public Health, 2019, 1–10. https://doi.org/10.1155/2019/7851354

    Article  Google Scholar 

  • Martínez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science (New York, N.Y.), 321(5887), 365–367. https://doi.org/10.1126/science.1159483

  • Mokh, S. (2017). Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. Science of the Total Environment, 13.

  • Mokh, S., El Khatib, M., Koubar, M., Daher, Z., & Al Iskandarani, M. (2017). Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. The Science of the Total Environment, 609, 830–841. https://doi.org/10.1016/j.scitotenv.2017.07.230

    Article  CAS  Google Scholar 

  • Mounzer, C., Baydoun, S., Amer, R., & Borjac, J. (2021). Knowledge, attitudes and practices regarding the use of antibiotics: a cross-sectional study from a rural area of Lebanon.

  • Moussa, J., Abboud, E., & Tokajian, S. (2021). Detection of antibiotic-resistant bacteria, resistance determinants, and mobile elements in surface waters in Lebanon (p. 2021.02.12.21251645). medRxiv. https://doi.org/10.1101/2021.02.12.21251645

  • Myers, J., Hennessey, M., Arnold, J.-C., McCubbin, K. D., Lembo, T., Mateus, A., Kitutu, F. E., Samanta, I., Hutchinson, E., Davis, A., Mmbaga, B. T., Nasuwa, F., Gautham, M., & Clarke, S. E. (2022). Crossover-use of human antibiotics in livestock in agricultural communities: A qualitative cross-country comparison between Uganda Tanzania and India. Antibiotics, 11(10), 1342. https://doi.org/10.3390/antibiotics11101342

    Article  CAS  Google Scholar 

  • Nehme, N., & Haidar, C. (2018). The physical, and chemical and microbial characteristics of Litani river water. In A. Shaban & M. Hamzé (Eds.), The Litani River, Lebanon: An assessment and current challenges (pp. 57–70). Springer International Publishing. https://doi.org/10.1007/978-3-319-76300-2_4

  • O., E. (2012). Assessment of physicochemical qualities, heavy metal concentrations and bacterial pathogens in Shanomi Creek in the Niger Delta, Nigeria. African Journal of Environmental Science and Technology, 6(11), 419–424https://doi.org/10.5897/AJEST12.038

  • Odonkor, S. T., Simpson, S. V., Morales Medina, W. R., & Fahrenfeld, N. L. (2022). Antibiotic-resistant bacteria and resistance genes in isolates from Ghanaian drinking water sources. Journal of Environmental and Public Health, 2022, e2850165. https://doi.org/10.1155/2022/2850165

    Article  CAS  Google Scholar 

  • Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2016). Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the Total Environment, 540, 267–277. https://doi.org/10.1016/j.scitotenv.2015.06.143

    Article  CAS  Google Scholar 

  • Ram, B., & Kumar, M. (2020). Correlation appraisal of antibiotic resistance with fecal, metal and microplastic contamination in a tropical Indian river, lakes and sewage. Npj Clean Water, 3(1), Article 1. https://doi.org/10.1038/s41545-020-0050-1

  • Ricky, R., Chiampo, F., & Shanthakumar, S. (2022). Efficacy of ciprofloxacin and amoxicillin removal and the effect on the biochemical composition of Chlorella vulgaris. Bioengineering, 9(4), 134. https://doi.org/10.3390/bioengineering9040134

    Article  CAS  Google Scholar 

  • S, S., M, T., & L, T. (2020). Bacterial resistance to antibiotics and associated factors in two hospital centers in Lebanon from January 2017 to June 2017. Infection Prevention in Practice, 2(2). https://doi.org/10.1016/j.infpip.2020.100043

  • Saadeh, M., Semerjian, L., & Amacha, N. (2012). Physicochemical evaluation of the Upper Litani River watershed Lebanon. The Scientific World Journal, 2012, 462467. https://doi.org/10.1100/2012/462467

    Article  CAS  Google Scholar 

  • Shaban, A., & Hamzé, M. (Eds.). (2018). The Litani River, Lebanon: An assessment and current challenges (Vol. 85). Springer International Publishing. https://doi.org/10.1007/978-3-319-76300-2

  • Szymańska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G., & Woźniak, M. K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchemical Journal, 147, 729–740. https://doi.org/10.1016/j.microc.2019.04.003

    Article  CAS  Google Scholar 

  • Ternak, G. (2005). Antibiotics may act as growth/obesity promoters in humans as an inadvertent result of antibiotic pollution? Medical Hypotheses, 64(1), 14–16. https://doi.org/10.1016/j.mehy.2004.08.003

    Article  CAS  Google Scholar 

  • Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S., & Zhao, J.-L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782. https://doi.org/10.1021/acs.est.5b00729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Environmental Observatory O-Life and the Litani River Authority (LRA) for their support in the successful completion of the research work.

Funding

This research does not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

RA and SB conceptualized the study, designed the survey tool, sampling, and laboratory and led the preparation of the manuscript with input from all authors. CM contributed to the field and laboratory work, data analysis, interpretation, and preparation of the manuscript. JB performed data analysis and visualization with input from all authors and a review of manuscripts. SB performed the co-funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jamilah M. Borjac.

Ethics declarations

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounzer, C.K., Baydoun, S.A., Amer, R.A. et al. Occurrence of antibiotics and antibiotic-resistant bacteria in the Lebanese polluted Litani River. Environ Monit Assess 196, 90 (2024). https://doi.org/10.1007/s10661-023-12267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12267-6

Keywords

Navigation