Skip to main content
Log in

Functional trait diversity and aboveground biomass of herbaceous vegetation in temperate forests of Kashmir Himalaya

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Studying functional trait diversity can provide crucial clues about the adaptive survival strategies of regional plant species pool. Despite large-scale trait datasets available worldwide, the plant trait data from many biodiversity hotpot regions, like the Himalaya is still scarce. In this study, we aimed to investigate the plant functional traits and aboveground biomass of understory herbaceous vegetation in temperate forests of Overa-Aru wildlife sanctuary of Kashmir Himalaya. We also investigate how these functional traits correlate and what is the magnitude of trait-biomass relationship across the herbaceous species pool. For this, we conducted field sampling and measured leaf functional traits and aboveground biomass of 38 plant species in the study region during peak growing season (July–August) in the year 2021. The results revealed a significant interspecific trait variability among the species studied. We observed a high variability in leaf size and type spectra of the species, with nanophyll and simple leaf lamina, respectively, the most common types among the species studied. The correlation analysis revealed that plant height was positively correlated with aboveground biomass. The variation partitioning analysis revealed that the plant height explained the maximum fraction of variation in aboveground biomass, while least by specific leaf area. Overall, the findings from the present study provide useful insights in understanding trait-trait relationship and trait-environment interaction at the regional scale and can also help in recognizing adaptive functional traits of plant species that determine plant survival under the changing climate in this Himalayan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The primary data will be made available on request.

Abbreviations

AGB :

Aboveground biomass

BSI :

Botanical Survey of India

LA :

Leaf area

POWO :

Plants of the World Online

SLA :

Specific leaf area

References

  • Ahmad, K. S., Javaid, A., Hameed, M., Fatima, S., Ahmad, F., Ashraf, M., ..., & Ahmad, I. (2022). Survival strategies in two high altitude Sorghum species from western Himalayas. Acta Physiologiae Plantarum, 44(6), 1–13.

  • Ahrens, C. W., Andrew, M. E., Mazanec, R. A., Ruthrof, K. X., Challis, A., Hardy, G., ..., & Rymer, P. D. (2020). Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and Evolution, 10(1), 232–248.

  • Ali, F., & Khan, N. (2022). Do environmental variables and overstory communities affect the spatial pattern of understory vegetation? Lessons from Monotheca buxifolia (Falc.) A. DC. forests in Pakistan. Acta Botanica Brasilica, 36, e2021abb0210.

  • Anwar, S., Abid, F., Noreen, I., Alam, N., & Ullah, Z. (2022). Liakot forests in Kalam, District Swat, Pakistan: Floristics, conservation, sustainability, and ecological classification. In Biodiversity, conservation and sustainability in Asia: Volume 2: Prospects and challenges in South and Middle Asia (pp. 219–240). Springer.

  • Araújo, I., Morandi, P. S., Müller, A. O., Mariano, L. H., Alvarez, F., da Silva, I. V., ..., & Marimon, B. S. (2022). Leaf functional traits and monodominance in Southern Amazonia tropical forests. Plant Ecology, 223(2), 185–200.

  • Basnett, S., & Devy, S. M. (2021). Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya. Alpine Botany, 131(1), 63–72.

    Article  Google Scholar 

  • Blasini, D. E., Koepke, D. F., Bush, S. E., Allan, G. J., Gehring, C. A., Whitham, T. G., ..., & Hultine, K. R. (2022). Tradeoffs between leaf cooling and hydraulic safety in a dominant arid land riparian tree species. Plant, Cell & Environment, 45(6), 1664-1681.

  • Bonilla-Valencia, L., Castillo-Agüero, S., Zavala-Hurtado, J. A., Espinosa García, F. J., Lindig-Cisneros, R., & Martínez-Orea, Y. (2022). Linking functional diversity to ecological indicators: A tool to predict anthropogenic effects on ecosystem functioning. Environmental Reviews, 30(2), 175183.

    Article  Google Scholar 

  • Botanical Survey of India-Flora of India. (2022). Available from https://efloraindia.bsi.gov.in/. (Accessed on 24-Oct-2022).

  • Canessa, R., Saldaña, A., Ríos, R. S., & Gianoli, E. (2018). Functional trait variation predicts distribution of alien plant species across the light gradient in a temperate rainforest. Perspectives in Plant Ecology, Evolution and Systematics, 32, 49–55.

    Article  Google Scholar 

  • Cheng, X., Ping, T., Li, Z., Wang, T., Han, H., & Epstein, H. E. (2022). Effects of environmental factors on plant functional traits across different plant life forms in a temperate forest ecosystem. New Forests, 53(1), 125–142.

    Article  Google Scholar 

  • Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., ..., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335–380.

  • Curtis, E. M., Leigh, A., & Rayburg, S. (2012). Relationships among leaf traits of Australian arid zone plants: Alternative modes of thermal protection. Australian Journal of Botany, 60(6), 471–483.

    Article  Google Scholar 

  • Dar, G. H., & Khuroo, A. A. (Eds.). (2020). Biodiversity of the Himalaya: Jammu and Kashmir State (Vol. 18). Springer.

    Google Scholar 

  • De Frenne, P., Graae, B. J., Rodríguez‐Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., ..., & Verheyen, K. (2013). Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology, 101(3), 784–795.

  • Ding, Y., & Zang, R. (2021). Determinants of aboveground biomass in forests across three climatic zones in China. Forest Ecology and Management, 482, 118805.

    Article  Google Scholar 

  • eFlora of China (FoC). (2008). Available from: http://www.efloras.org/. (Accessed: 26-Oct-2022).

  • eFlora of Pakistan (FoP). (2022). Available from: http://www.tropicos.org/Project/Pakistan. (Accessed on 18-Oct-2022).

  • El-Barougy, R. F., Dakhil, M. A., Halmy, M. W., Gray, S. M., Abdelaal, M., Khedr, A. H. A., & Bersier, L. F. (2021). Invasion risk assessment using trait-environment and species distribution modelling techniques in an arid protected area: Towards conservation prioritization. Ecological Indicators, 129, 107951.

    Article  Google Scholar 

  • Farji-Brener, A. G., & Ghermandi, L. (2008). Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1431–1440.

    Article  Google Scholar 

  • Flo, V., Martínez-Vilalta, J., Mencuccini, M., Granda, V., Anderegg, W. R., & Poyatos, R. (2021). Climate and functional traits jointly mediate tree water-use strategies. New Phytologist, 231(2), 617–630.

    Article  CAS  Google Scholar 

  • Friedman, J., Middleton, T. E., & Rubin, M. J. (2019). Environmental heterogeneity generates intrapopulation variation in life-history traits in an annual plant. New Phytologist, 224(3), 1171–1183.

    Article  Google Scholar 

  • Fuller, G. D., & Bakke, A. L. (1918). Raunkiaer’s “Life Forms”, “Leaf-size classes”, and statistical methods. The Plant World, 21(2), 25–37.

    Google Scholar 

  • Fusaro, L., Salvatori, E., Winkler, A., Frezzini, M. A., De Santis, E., Sagnotti, L., ..., & Manes, F. (2021). Urban trees for biomonitoring atmospheric particulate matter: An integrated approach combining plant functional traits, magnetic and chemical properties. Ecological Indicators, 126, 107707.

  • Gao, J., Wang, K., & Zhang, X. (2022). Patterns and drivers of community specific leaf area in China. Global Ecology and Conservation, 33, e01971.

    Article  Google Scholar 

  • Gaudet, C. L., & Keddy, P. A. (1988). A comparative approach to predicting competitive ability from plant traits. Nature, 334, 242–243.

    Article  Google Scholar 

  • Gaüzère, P., Blonder, B., Denelle, P., Fournier, B., Grenié, M., Delalandre, L., ..., & Thuiller, W. (2022). The functional trait distinctiveness of plant species is scale dependent. Ecography, 2023(1), e06504.

  • Guo, W., Bai, Y., Zhuo, M., Qu, X., Luo, D., Li, J., ..., & Fang, J. (2022). Study on the relationship between leaf functional traits and soil factors of Rhododendron aganniphum var. schizopeplum at different altitude gradients in Sejila mountain. Forest Chemicals Review, 7(2), 673–685.

  • Happonen, K., Virkkala, A. M., Kemppinen, J., Niittynen, P., & Luoto, M. (2022). Relationships between above-ground plant traits and carbon cycling in tundra plant communities. Journal of Ecology, 110(3), 700–716.

    Article  CAS  Google Scholar 

  • Haq, S. M., Malik, A. H., Khuroo, A. A., & Rashid, I. (2019a). Floristic composition and biological spectrum of Keran-a remote valley of northwestern Himalaya. Acta Ecologica Sinica, 39(5), 372–379.

    Article  Google Scholar 

  • Haq, S. M., Malik, Z. A., & Rahman, I. U. (2019b). Quantification and characterization of vegetation and functional trait diversity of the riparian zones in protected forest of Kashmir Himalaya, India. Nordic Journal of Botany, 37(11), e02438.

  • He, P., Fontana, S., Ma, C., Liu, H., Xu, L., Wang, R., ..., & Li, M. H. (2023). Using leaf traits to explain species co-existence and its consequences for primary productivity across a forest-steppe ecotone. Science of The Total Environment, 859, 160139.

  • Hodgson, J. G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P., Shipley, B., Sharafi, M., Cerabolini, B. E. L., Cornelissen, J. H. C., Band, S. R., Bogard, A., Castro-Díez, P., Guerrero-Campo, J., Palmer, C., Pérez-Rontomé, M. C., Carter, G., Hynd, A., Romo-Díez, A., de Torres, E. L., & Royo Pla, F. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108, 1337–1345.

    Article  CAS  Google Scholar 

  • Hudson, J. M. G., Henry, G. H. R., & Cornwell, W. K. (2011). Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology, 17(2), 1013–1021.

    Article  Google Scholar 

  • India Meteorological Department (IMD), Meteorological Centre, Rambagh, Srinagar 2021.

  • Islam, T., Ali, L., Nawchoo, I. A., & Khuroo, A. A. (2023a). Diversity and utilization patterns of fodder resources in a Himalayan protected area. Environmental Monitoring and Assessment, 195(9), 1117.

    Article  Google Scholar 

  • Islam, T., Khuroo, A. A., & Nawchoo, I. A. (2023b). An annotated checklist of flora of Overa-Aru wildlife sanctuary, Kashmir Himalaya. Phytotaxa, 599(1), 20–50.

    Article  Google Scholar 

  • Islam, T., Nawchoo, I. A., & Khuroo, A. A. (2023c). Community perception and management of ecosystem services in a protected area in Kashmir Himalaya. Human Ecology, 51(4), 769–779.

  • Islam, T., Hamid, M., Nawchoo, I. A., & Khuroo, A. A. (2023d). Leaf functional traits vary among growth forms and vegetation zones in the Himalaya. Science of The Total Environment, 906, 167274.

  • Khan, M. N., Ali, S., Razak, S. A., Zaman, A., Iqbal, M., & Shah, S. N. (2022). Assessment of floristic diversity in the mountain ecosystem of Marghazar Valley, Hindukush Range, Swat, Pakistan. Biodiversitas Journal of Biological Diversity, 23(2), 1000–1013.

  • Khatri, K., Negi, B., Bargali, K., & Bargali, S. S. (2022). Effects of elevation and habitat on leaf and reproductive traits of Ageratina adenophora (Sprengel) King & Robinson. South African Journal of Botany, 147, 859–870.

    Article  Google Scholar 

  • Kumar, M., & Garkoti, S. C. (2021). Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecology, 222(6), 723–735.

    Article  Google Scholar 

  • Landuyt, D., De Lombaerde, E., Perring, M. P., Hertzog, L. R., Ampoorter, E., Maes, S. L., ..., & Verheyen, K. (2019). The functional role of temperate forest understory vegetation in a changing world. Global Change Biology, 25(11), 3625–3641.

  • Ma, Z., Chen, H. Y., Bork, E. W., Carlyle, C. N., & Chang, S. X. (2020). Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Global Ecology and Biogeography, 29(10), 1817–1828.

    Article  Google Scholar 

  • Maes, S. L., Perring, M. P., Depauw, L., Bernhardt‐Römermann, M. A. R. K. U. S., Blondeel, H., Brūmelis, G. U. N. T. I. S., ..., & Verheyen, K. (2020). Plant functional trait response to environmental drivers across European temperate forest understory communities. Plant Biology, 22(3), 410–424.

  • Maharjan, S. K., Sterck, F. J., Dhakal, B. P., Makri, M., & Poorter, L. (2021). Functional traits shape tree species distribution in the Himalayas. Journal of Ecology, 109(11), 3818–3834.

    Article  Google Scholar 

  • Manish, K., Pandit, M. K., & Sen, S. (2021). Inferring the factors for origin and diversifications of endemic Himalayan flora using phylogenetic models. Modeling Earth Systems and Environment, 8(2), 2591–2598.

  • Mensah, S., Kakaï, R. G., & Seifert, T. (2016). Patterns of biomass allocation between foliage and woody structure: The effects of tree size and specific functional traits. Annals of Forest Research, 59(1), 49–60.

    Article  Google Scholar 

  • Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., Pitman, A., Hemmings, F. A., & Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology, 97, 923–932.

    Article  Google Scholar 

  • Muhammad, S., Hussain, M., Saqib, Z., Alam, J., Mujtaba, G., Shah, Z. A., ..., & Abideen, Z. (2022). Flora of the Kurram valley (tribal area), Pakistan: Diversity, physiognomy and conservation issues. Pakistan Journal of Botany, 55, 1.

  • Niu, S., Classen, A. T., & Luo, Y. (2018). Functional traits along a transect. Functional Ecology, 32(1), 4–9.

    Article  Google Scholar 

  • Ordonez, A. (2014). Global meta-analysis of trait consistency of non-native plants between their native and introduced areas. Global Ecology and Biogeography, 23, 264–273.

    Article  Google Scholar 

  • Origin Pro (version 9.9). (2022). OriginLab Corporation, Northampton, USA.

  • PAST (version 4.12). (2022). https://www.nhm.uio.no/english/research/resources/past/

  • Pastor, A. V., Tzoraki, O., Bruno, D., Kaletová, T., Mendoza-Lera, C., Alamanos, A., ..., & Jorda-Capdevila, D. (2022). Rethinking ecosystem service indicators for their application to intermittent rivers. Ecological Indicators, 137, 108693.

  • Paź-Dyderska, S., Dyderski, M. K., Szwaczka, P., Brzezicha, M., Bigos, K., & Jagodziński, A. M. (2020). Leaf traits and aboveground biomass variability of forest understory herbaceous plant species. Ecosystems, 23(3), 555–569.

    Article  Google Scholar 

  • Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ..., & Cornelissen, J. H. C. (2016). Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8), 715–716.

  • Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L., & Godoy, Ó. (2019). Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 10(1), 1–11.

    Article  Google Scholar 

  • Pichon, N. A., Cappelli, S. L., & Allan, E. (2022). Intraspecific trait changes have large impacts on community functional composition but do not affect ecosystem function. Journal of Ecology, 110(3), 644–658.

    Article  Google Scholar 

  • POWO (Plants of the World Online). (2022). Facilitated by the Royal Botanic Gardens, Kew. Available from: http://www.plantsoftheworldonline.org/. (Accessed on 16-Oct-2022).

  • R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/

  • Rashid, I., Romshoo, S. A., & Abdullah, T. (2017). The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate. Journal of Asian Earth Sciences, 138, 38–50.

    Article  Google Scholar 

  • Rathee, S., Ahmad, M., Sharma, P., Singh, H. P., Batish, D. R., Kaur, S., ..., & Kohli, R. K. (2021). Biomass allocation and phenotypic plasticity are key elements of successful invasion of Parthenium hysterophorus at high elevation. Environmental and Experimental Botany, 184, 104392.

  • Raunkiaer, C. (1934). The life forms of plants and statistical geographical. – Clarendon Press, p. 632.

  • Ren, L., Guo, X., Liu, S., Yu, T., Guo, W., Wang, R., ..., & Eller, F. (2020). Intraspecific variation in Phragmites australis: Clinal adaption of functional traits and phenotypic plasticity vary with latitude of origin. Journal of Ecology, 108(6), 2531–2543.

  • Rodgers, W. A., & Panwar, S. H. (1988). Biogeographical classification of India. New Forest, Dehra Dun, India.

  • Rubio-Ríos, J., Pérez, J., Salinas, M. J., Fenoy, E., Boyero, L., & Casas, J. J. (2022). Climate-induced plasticity in leaf traits of riparian plants. Diversity and Distributions, 28(4), 859–876.

    Article  Google Scholar 

  • Shi, P., Miao, Q., Niinemets, Ü., Liu, M., Li, Y., Yu, K., & Niklas, K. J. (2022). Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species differing in venation density. American Journal of Botany, 109(6), 899–909.

  • Sigdel, S. R., Liang, E., Rokaya, M. B., Rai, S., Dyola, N., Sun, J., ..., & Peñuelas, J. (2023). Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas. Functional Ecology, 37(2), 383–394.

  • Spicer, M. E., Mellor, H., & Carson, W. P. (2020). Seeing beyond the trees: A comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology, 101(4), e02974.

    Article  Google Scholar 

  • Trentini, C. P., Campanello, P. I., Villagra, M., Ritter, L., Ares, A., & Goldstein, G. (2017). Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. Forest Ecology and Management, 384, 236–247.

    Article  Google Scholar 

  • Vanneste, T., Valdés, A., Verheyen, K., Perring, M. P., Bernhardt-Römermann, M., Andrieu, E., ..., & De Frenne, P. (2019). Functional trait variation of forest understory plant communities across Europe. Basic and Applied Ecology, 34, 1–14.

  • Vasey, G. L., Weisberg, P. J., & Urza, A. K. (2022). Intraspecific trait variation in a dryland tree species corresponds to regional climate gradients. Journal of Biogeography, 49(12), 2309–2320.

    Article  Google Scholar 

  • Wang, C., Zhou, J., Xiao, H., Liu, J., & Wang, L. (2017). Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. Journal of Forestry Research, 28(2), 241–248.

    Article  Google Scholar 

  • Wang, J., Hu, A., Meng, F., Zhao, W., Yang, Y., Soininen, J., ..., & Zhou, J. (2022a). Embracing mountain microbiome and ecosystem functions under global change. New Phytologist, 234(6), 1987–2002.

  • Wang, W., Jiang, Y., Chen, Y., Luo, W., He, D., Wang, Y., ..., & Li, B. (2022b). Using intraspecific variation of functional traits and environmental factors to understand the formation of nestedness patterns of a local forest community. Journal of Plant Ecology, 15, 1185–1198.

  • Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait variation in plants: A renewed focus on its role in ecological processes. Annals of Botany, 127(4), 397–410.

    Article  CAS  Google Scholar 

  • Xie, H., Wang, G. G., & Yu, M. (2018). Ecosystem multifunctionality is highly related to the shelterbelt structure and plant species diversity in mixed shelterbelts of eastern China. Global Ecology and Conservation, 16, e00470.

    Article  Google Scholar 

  • Yang, K. T., Chen, G. P., Xian, J. R., Yu, X. Y., Zhang, J. W., & Wang, L. (2022a). Characteristics of stem and leaf functional traits of Rhododendron capitatum on the north slope of Zhagaliang, Gansu. Acta Prataculturae Sinica, 31(2), 111.

    Google Scholar 

  • Yang, Y., Fan, Y., Basang, C. M., Lu, J., Zheng, C., & Wen, Z. (2022b). Different biomass production and soil water patterns between natural and artificial vegetation along an environmental gradient on the Loess Plateau. Science of the Total Environment, 814, 152839.

    Article  CAS  Google Scholar 

  • Yi, R., Xu, X., Huang, Y., Zhu, S., Xu, C., & Zhang, Y. (2022). tropical plant species living under p limitation show signs of greater resistance to drought. Geophysical Research Letters, 49(7), e2021GL096686.

    Article  Google Scholar 

  • Ying, L., Maohua, M., Zhi, D., Bo, L., Ming, J., Xianguo, L., & Yanjing, L. (2023). Light–acquisition traits link aboveground biomass and environment in inner saline–alkaline herbaceous marshes. Science of the Total Environment, 857, 159660.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the research scholars and supporting staff of BIOTA Laboratory, Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, for their kind assistance and support during the present study. The authors also acknowledge Sajad Ahmad Wani, Centre for Biodiversity and Taxonomy (CBT), University of Kashmir, for his help in the data analysis. We duly acknowledge the necessary permission granted by Department of Wildlife Protection, Jammu & Kashmir Government to conduct this study. We are grateful to two anonymous reviewers and the editor for their valuable comments and suggestions, which have greatly improved quality of the manuscript.

Funding

Tajamul Islam acknowledge the University Grants Commission (UGC) under 924/(CSIRNET JUNE-2019) for providing financial assistance as Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Tajamul Islam: Conceptualization; Methodology; Data collection; Curation and analysis; Software; Visualization; Writing-Original draft; Revision. Maroof Hamid: Data curation and analysis; Writing-Original draft. Anzar Ahmad Khuroo: Conceptualization; Methodology; Supervision; Investigation; Validation; Writing-Original draft; Revision. Irshad A. Nawchoo: Conceptualization; Supervision; Investigation; Validation.

Corresponding author

Correspondence to Tajamul Islam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Human and animal ethics

The present study does not involve any human or animal usage.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, T., Hamid, M., Khuroo, A.A. et al. Functional trait diversity and aboveground biomass of herbaceous vegetation in temperate forests of Kashmir Himalaya. Environ Monit Assess 196, 60 (2024). https://doi.org/10.1007/s10661-023-12215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12215-4

Keywords

Navigation