Skip to main content
Log in

Spatial assessment and chemical characterization of degraded (salt-affected) soils at post-reclamation stage of the Indo-Gangetic Plain in Haryana State

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dynamics of soil salinity and sodicity is a common feature driven by anthropogenic causes such as soil reclamation, the effect of extreme climate events, disturbed salt, and water balance in irrigated areas that are devoid of any good quality groundwater source and adequate natural surface drainage condition in a semiarid climatic region. Periodic soil salinity assessment is therefore vital to know the current soil salinity status, plan reclamation, and/or management strategies for sustained agricultural growth and livelihood security. Temporal studies using Indian Remote Sensing (IRS) LISS III data, at pre- (1997) and post-reclamation (2017) stages have indicated spatial changes as reclaimed areas (~ 35%) and dynamics of soil salinity as increased areas (~ 61%) under irrigation across the Gangetic plain of Haryana State. The prominent areas of reclaimed sodic soil soils were located in the old alluvial plain which covered Panipat (12.32%), Karnal (6.01%), and Jind (5.9%) districts. Based on pH, ECe, and ESP values, these were classified as slight (Sso1, 8.75%), moderate (Sso2, 24.73%), and strong (Sso3, 18.20%) sodic soils, respectively. Significant salinity-inflictions (emerging areas) were identified at low-lying, poorly drained, irrigated soils in south and central Haryana that cover Jhajjar (13.99%), Sirsa (11.06%), Hisar (10.15%), Rohtak (8.73%), Bhiwani (6.43%), Palwal (4.31%), and Rewari (3.01%) districts. Slight (Ssa1, 16.82%), and moderate (Ssa2, 22.13%), categories are dominant soils, respectively. Among the landforms, significant areas (28.24%) were identified in the old alluvial plain with sand dunes (OAPSD), aeo-fluvial plain (AFP, 8.6%), and fluvio-aeolian plain (FAP, 6.0%), respectively. Dominant areas of reclaimed soils (14.4%) were identified in OAPSD. The soil analysis data indicated that these soil are moderate to strongly sodic (pH 8.7–11.0) and saline (ECe 4–26 dS m−1). The reclaimed sodic soils showed prominent improvement in soil pH and sodicity levels (pH 8.3–9.2) at 0–15 cm depth and are commonly located in the Ghaggar and Yamuna river plains. Poor quality groundwater with high Residual Sodium Carbonate (RSC) was dominant at selected locations under the arid and semiarid climate. The database can also be used as a reference database for further monitoring of soil salinity status particularly in the irrigated regions. Currently, it is also used as a primary database for harmonization, monitoring, and reconciling of similar soils of the world under the Global Soil Partnership projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used for the manuscript is entirely collected by the author. The data analysis was carried out solely by the author. The materials used for the preparations of the manuscript were both primary and secondary sources. The secondary sources have been cited properly in the manuscript. The uploaded figures and its placements have been checked thoroughly in the manuscript. The legends of the figures have been cited in appropriate places as texts along the titles. The references have been checked and presented following the journal’s requirements, wherever it is possible.

References      

  • Abdel-Fattah, M. K. (2012). Role of gypsum and compost in reclaiming saline-sodic soils. Journal of Agriculture and Veterinary Science, 1(3), 30–38.

    Google Scholar 

  • Abrol, I.P., & Bhumbla, D.R. (1971). Saline and Alkali Soils of India; their occurrence and management. World Soil Resource Report No. 41, Food and Agriculture Organization of the United Nations (FAO), Rome (Italy), pp. 42–52.

  • Abrol, I.P., Dargan, K.S., & Bhumbla, D.R. (1973). Reclaiming alkali soils. Bulletin No. 2,Central Soil Salinity Research Institute (B. K. A. P.), Karnal, pp. 57

  • Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management. FAO Soils Bulletin 39, Rome: FAO

  • Aggarwal, P. K., Joshi, P. K., Ingram, J. S. I., & Gupta, R. K. (2004). Adapting food systems of the Indo-Gangetic plains to global environment change: Key information needs to improve policy formulation. Environmental Science & Policy, 7, 487–498.

    Article  Google Scholar 

  • Ajai, Arya, A. S., Dhinwa, P. S., Pathan, S. K., & Ganesh, R. K. (2009). Desertification/land degradation status mapping of India. Current Science, 97, 1478–1483.

    Google Scholar 

  • Akca, E., Aydin, M., Kapur, S., Kume, T., Nagano, T., Watanabe, T., Cilek, A., & Zorlu, K. (2020). Long-term monitoring of soil salinity in a semiarid environment of Turkey. CATENA, 193, 104614. https://doi.org/10.1016/j.catena.2020.104614

    Article  CAS  Google Scholar 

  • Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigation terrain. Geoderma, 163, 55–62. https://doi.org/10.1016/j.geoderma.2011.04.001

    Article  ADS  Google Scholar 

  • Ambast, S. K., Gupta, S. K., & Singh, G. (2007). Agricultural land drainage: Reclamation of waterlogged saline lands. Central Soil Salinity Research Institute, Karnal, India, p231.

  • Bai, Z. G., Dent, D., Olsson, L., & Scharpman, M. E. (2008). Proxy global assessment of land degradations. Soil Use  & Management, 24(3). https://doi.org/10.1111/j.1475-2743.2008.00169.x

  • Basak, N., Sheoran, P., Sharma, R., Yadav, R. K., Singh, R. K., Kumar, S., Krishnamurthy, T., & Sharma, P. C. (2021). Gypsum and pressmud amelioration improve soil organic carbon storage and stability in sodic agroecosystems. Land Degradation & Development. https://doi.org/10.1002/ldr.4047

    Article  Google Scholar 

  • Basak, N., Rai, A. K., Sundha, P., Meena, R. L., Bedwal, S., Yadav, R. K., & Sharma, P. C. (2022). Assessing soil quality for rehabilitation of salt-affected agroecosystem: a comprehensive review. Frontier in Environmental Science. https://doi.org/10.3389/fenvs.2022.935785

    Article  Google Scholar 

  • Bhargava, G.P., Singhla, S.K., & Abrol, I.P. (1972). Characteristics of typical saline-sodic soils occurring in Karnal district, Haryana state. Report No. 02, Division of Soils and Agronomy, Central Soil Salinity Research Institute (I.C.A.R.), pp. 36.

  • Bhargava, G.P., Sharma, R.C., Pal, D.K., & Abrol, I.P. (1980). A case study of distribution and formation of salt affected soils in Haryana state. In: Proc. International symposium on salt affected soils, Karnal, pp. 83–90.

  • Bharti, P. K., Kumar, P., & Singh, V. (2013). Impact of industrial effluents on ground water and soil quality in the vicinity of industrial area of Panipat city, India. Journal of Applied and Natural Science, 5(1), 132–136.

    Article  ADS  Google Scholar 

  • Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice-wheat cropping system. International Soil and Water Conservation Research, 4, 64–74. https://doi.org/10.1016/j.iswcr.2015.12.0011

    Article  Google Scholar 

  • Bhattacharyya, T., Sarkar, D., & Pal, D. K. (2009). Soil survey manual (p. 400). NBSS&LUP Publication No. 146.

    Google Scholar 

  • Bhumbla, D.R., Abrol, I.P., Bhargava, G.P., & Singhla, S.K. (1970). Soils of the experimental farm, Karnal. Bulletin No. 01, Division of Soil Science and Agronomy, Central Soil Salinity Research Institute (I. C. A. R.), Karnal, India, pp. 43

  • CGWB (2022). Ground Water Year Book of Haryana State. Central groundwater board, ministry of water resources, rive development and Ganga rejuvenation, pp. 144.

  • Chhabra, R. (2004). Classification of salt-affected soils. Arid Land Researxch and Management, 19, 61–79. https://doi.org/10.1080/15324980590887344

    Article  CAS  Google Scholar 

  • Chaganti, V. N., & Crohn, D. M. (2015). Evaluating the relative contribution of physico-chemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma, 259–260, 45–55. https://doi.org/10.1016/j.geoderma.2015.05.005

    Article  ADS  CAS  Google Scholar 

  • Chinchmalatpure, A., Sethi, M., Kumar, P., Meena, M.D., Sidhu, G.S., Surya, J.N., Khurana, M.L., Ram, S., Jangra, S., Yadav, A., & Yadav, R.K. (2016). Assessment and mapping of salt affected soils using remote sensing and GIS in southern districts of Haryana state. Technical Bulletin: ICAR-CSSRI/Karnal/2016, p49

  • Colwell, R.N. (ed.) (1996). Manual of Remote Sensing. Vol. III, Interpretation and Applications. American Society of Photogrammetry, 3rd Ed. April 1996.

  • Corwin, D. L. (2021). Climate change aspects on soil salinity in agricultural areas. Europeon Journal of Soil Science, 72, 842–862.

    Article  Google Scholar 

  • Corwin, D. L., & Scudiero, E. (2020). Field scale apparent electrical conductivity. Soil Science Society of America Journal, 84, 1405–1441. https://doi.org/10.1002/saj2.20153

    Article  ADS  CAS  Google Scholar 

  • CSSRI, (1985). Annual Report. Central Soil Salinity Research Institute (Indian Council of Agricultural Research) Karnal -132001, India, pp. 265, www.cssri.org

  • CSSRI (1997). Vision -2020- CSSRI perspective plan. Central Soil Salinity Research Institute, Indian Council of Agricultural Research, Karnal, Haryana- 132001 (India), pp. 94.

  • CSSRI, (2006). A Journey to Excellence (1969–2006). Central Soil Salinity Research Institute (Indian Council of Agricultural Research), Karnal – 132001 (India), p.156

  • CSSRI, (2015). Vision (2050). Central Soil Salinity Research Institute (Indian Council of Agricultural Research) Karnal -132001, India, pp. 31, www.cssri.org

  • CSSRI, (2016). Reclamation of alkali soils through gypsum technology. ICAR-CSSRI/Karnal/Technology Folder/2016/01, Central Soil Salinity Research Institute (Indian Council of Agricultural Research) Karnal -132001, India, pp. 31, www.cssri.org

  • Dagar, J. C., Tomar, O. S., Minhas, P. S., Singh, G., & Ram, J. (2008). Dryland biosaline agriculture Hisar experience. Technical Bulletin: CSSRI/Karnal/6/2008 pp 28.

  • Daloz, A. S., Rydsaa, J. H., Hodnebrog, O., Sillmann, J., van Oort, B., Mohr, C. W., Agrawal, M., Emberson, L., Stordal, F., & Zhang, T. (2021). Direct and indirect impacts of climate change on Wheat yield in the Indo-Gangetic plain in India. Journal of Agriculture and Food Research, 4, 100132. https://doi.org/10.1016/j.jafr.2021100132

    Article  Google Scholar 

  • Damodaran, T., Rai, R. B., Mishra, V. K., Sharma, D. K., Ram, R. A., Rai, S., & Kumar, H. (2011). Integrated farming system and livelihood security- an approach (p. 106). Central Soil Salinity Research Institute, Regional Research Station.

    Google Scholar 

  • Datta, K. K., & de Jong, C. (2002). Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agricultural Water Management, 57, 223–248.

    Article  Google Scholar 

  • Datta, K. K., de Jong, C., & Singh, O. P. (2000). Reclaiming salt-affected land through drainage in Haryana, India: A financial analysis. Agricultural Water Management, 46, 55–71.

    Article  Google Scholar 

  • Dehaan, R. L., & Taylor, G. R. (2002). Field-based spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sensing of Environment, 80, 406–417.

    Article  ADS  Google Scholar 

  • Dey, P., & Gupta, S. K. (2011). Salinity management for sustainable agriculture in canal commands. Central Soil Salinity Research Institute, Karnal, 127p.

  • Dwivedi, R. S. (1994). Study of salinity and waterlogging in Uttar Pradesh (India) using remote sensing data. Land Degradation & Development, 5, 191–199. https://doi.org/10.1002/ldr.3400050303

    Article  Google Scholar 

  • Dwivedi, R. S., & Sreenivas, K. (2002). The vegetation and waterlogging dynamics as derived from space borne multi-spectral and multi-temporal data. International Journal of Remote Sensing, 23, 2729–2740. https://doi.org/10.1080/01431160110076234

    Article  ADS  Google Scholar 

  • EOS Data Analytics (2021). Soil salinization causes & how to prevent and manage it. https://eos.com/blog/soil-salinization

  • FAO. (2020). Mapping of salt-affected soils- Technical manual. Rome FAO. https://doi.org/10.4060/ca9215en

    Book  Google Scholar 

  • FAO, (2005). Management of irrigation–induced salt affected soils. Food and Agriculture Organization, Rome in collaboration with CISEAU (http://www.ciseau.org), IPRID (http://www.fao.org/iptrid) and AGLL, FAO (Land and plant Nutrition Service (http://www.fao.org/ag/agll/spush/intro.htm)

  • FAO, (2023) Management of salt-affected soils. Food and Agricultural Organizations of the United Nations. https://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/en/

  • FAO-Ecocrop, (2008). Crop ecological requirements database (ECOCROP), Food and Agriculture Organization of the United Nations, www.fao.org.

  • Gibbs, H. K., & Salmon, J. M. (2015). Mapping the World’s degraded lands. Applied Geography, 57, 12–21. https://doi.org/10.1016/j.apgeog.2014.11.024

    Article  Google Scholar 

  • GOH (Government of Haryana), (2022). Gazetteers of Haryana. http://revenueharyana.gov.in

  • Government of Haryana. (1995). Statistical Handbook. Haryana Government. 

  • Gorji, T., Tanik, A., & Sertel, E. (2015). Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth and Planetary Science, 15, 507–512. https://doi.org/10.1016/j.proeps.2015.08.062

    Article  ADS  Google Scholar 

  • Gupta, R. K., & Abrol, I. P. (2000). Salinity build-up and changes in the rice-wheat system of the Indo-Gangetic plains. Experimental Agriculture, 36, 373–284.

    Article  Google Scholar 

  • Gupta, R., & Misra, A. K. (2018). Ground water quality analysis of quaternary aquifers in Jhajjar district, Haryana, India: Focus on ground water fluoride and health implications. Alexandria Engineering Journal, 57, 375–381. https://doi.org/10.1016/j.acj.2016.08.031

    Article  Google Scholar 

  • Gupta, R. K., Singh, N. T., Sethi, M. (1994). Ground water quality for irrigation in India. CSSRI Publication. Technical Bulletin No. 19, Central Soil Salinity Research Institute, Karnal, Harana, India- 132001, pp. 13.

  • Gupta, S.K. (2010). Management of alkali water. Central Soil Salinity Research Institute, Karnal India, Technical Bulletin: CSSRI/Karnal/2010/01, p 62.

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Vara Prasad, M. N., Ozturk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. Biomedical Research International, 2014, 589341. https://doi.org/10.1155/2014/589341

    Article  Google Scholar 

  • Hassani, A., Azapagic, A., & Shokri, N. (2020). Predicting long-term dynamics of soil salinity and sodicity on a global scale. PNAS, 117, 33017–33027. https://doi.org/10.1073/pnas.2013771117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani, A., Azapagic, A., & Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12, 6663. https://doi.org/10.1038/s41467-021-26907-3|

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W., Wang, H., Ye, W., Tian, Y., Hu, G., Lou, Y., Pan, H., Yang, Q., & Zhuge, Y. (2022). Distinct stabilization characteristics of organic carbon in coastal salt-affected soils with different salinity under straw return management. Land Degradation & Development. https://doi.org/10.1002/ldr.4276

    Article  PubMed Central  Google Scholar 

  • Hopmans, J.W., Qureshi, A.S., Kisekk, A.I., Munns, R., Grattan, S.R., Rengasamy, P., Ben-Gal, A., Assouline, S., Javaux, M., Minhas, P.S., Raats, P.A.C., Skaggs, T.H., Wang, G., De Jong van Lier, Q., Jiao, H., Lavado, R.S., Lazarovitch, N., Li, B., & Talesnik, E. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy. https://doi.org/10.1016/s.agron202103.001

  • Howari, F. M. (2003). The use of remote sensing data to extract information from agricultural land with emphasis on soil salinity. Australian Journal of Soil Research, 41, 1243–1253.

    Article  Google Scholar 

  • HSMITC. (2005). Haryana groundwater quality map. Haryana State Minor irrigation and Tube Well Corporation Limited.

    Google Scholar 

  • IAEA. (1995). Management strategies to utilize salt-affected soils: isotopic and conventional research methods Results of a coordinated research program organized. In Soil fertility, irrigation, and crop production section, Report No. IAEA-TECDOC814, INIS col. 26, INIS issue 19, p 64.  Vienna, Austria: Joint Report FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency.

  • ICAR, (2022). Farmer’s participatory sodic soil reclamation through integration of gypsum, pressmud, and sodicity tolerant varieties improved livelihood security. Indian Council of Agricultural Research, New Delhi. http://icar.org.in.

  • Indo-Dutch Network Project (IDNP). (2002). A methodology for identification of waterlogging and soil salinity conditions using remote sensing (p. 78). Wageningen.

    Google Scholar 

  • Ivuskin, K., Bartholomeus, H., Bregt, A. K., Kempen, B., & de Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260. https://doi.org/10.1016/j.rse2019.111260

    Article  Google Scholar 

  • Jackson, M. L. (1986). Advanced soil chemical analysis. New Delhi: Prentice Hall of India.

  • Jamat, J. (2007). Calculating the cost of irrigation induced soil salinization in the Tungabhadra project. Agricultural Economics, 31, 81–96. https://doi.org/10.1016/j.agecon.2003.06.001

    Article  Google Scholar 

  • Jat, H. S., Choudhary, M., Datta, A., Kakraliya, S. K., Mcdonal, A. J., Jat, M. L., & Sharma, P. C. (2022). Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems. Land Degradation & Development. https://doi.org/10.1002/ldr.4321

    Article  Google Scholar 

  • Kalambakattu, J. G., Johns, B., Kumar, S., David Raj, A., & Ellur, R. (2023). Temporal remote sensing based soil salinity mapping in Indo-Gangetic plain employing machine-learning techniques. Proceedings of the Indian National Science Academy. https://doi.org/10.1007/s43538-023-00157-x

    Article  Google Scholar 

  • Kaledhonkar, M. J., Meena, R. L., Meena, B. L., Basak, N., & Sharma, P. C. (Eds.). (2018). Advances in salinity and sodicity management under different agro-climatic regions for enhancing farmers’ income (p. 328p). ICAR-Central Soil Salinity Research Institute.

    Google Scholar 

  • Karim, S., Hussain, E., Khan, J. A., Hameed, A., Ougahl, H., & Iqbal, F. (2022). Spatio-temporal investigation of soil salinity using geospatial techniques: A case study of tehsil Toba Tek Singh. Communication in Soil Science and Plant AnalySis, 53, 1960–1978. https://doi.org/10.1080/00103624.2022.2070189

    Article  CAS  Google Scholar 

  • Kaur, L., & Rishi, M. S. (2018). Data on fluoride contamination in potable water in alluvial plains of district Panipat, Haryana, India. Data in Brief, 20, 1844–1849. https://doi.org/10.1016/j.dib.2018.09.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaushik, S., Dhote, P. R., Thakur, P. K., & Aggarwal, S. P. (2018). Assessing the impact of canal network on surface waterlogging using remote sensing datasets in Rohtak district, Haryana, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 261–266. https://doi.org/10.5194/ISPRS-archives-XLII-5-261-2018

  • Kiran, & Singh, C. B. (2021). Study on irrigation pattern in the various districts of state Haryana, India. Report and Opinion 2021 13 (10), 29-35. http://www.sciencepub.net/report.5. https://doi.org/10.7537/marsroj131021.05

  • Kishor, K., Patel, M., Bhattacharya, P., Pittman, C. U., & Mohan, D. (2022). Sources, spatio-temporal distribution and depth in groundwater salinity of the semi-arid Rohtak district, Haryana, India. Groundwater for Sustainable Development, 100790. https://doi.org/10.1016/j.gsd.2022.100790

  • Krishan, G., Sejwal, P., Bhagwat, A., Prasad, G., Yadav, B. K., Kumar, C. P., Kansal, M. L., Singh, S., Sudarsan, N., Bradley, A., Shram, M., & Muste, M. (2021). Role of ion chemistry and hydro-geochemical processes in aquifer salinization—a case study from a semi-arid region of Haryana, India. Water, 13, 617. https://doi.org/10.3390/w13050617

    Article  CAS  Google Scholar 

  • Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontier in Sustainable Food Systems, 4, 533781. https://doi.org/10.3889/fsufs.2020.533781

    Article  Google Scholar 

  • Kumar, R., Singh, A., Bhardwaj, A. K., Kumar, A., Yadav, R. K., & Sharma, P. C. (2022). Reclamation effect of salt-affected soils in India: Progress, emerging challenges, and future strategies. Land Degradation & Development, 33(13), 216–2180. https://doi.org/10.1002/ldr.4320

    Article  Google Scholar 

  • Lal, R. (2010). Soil degradation and food security in South Asia. In: Lal, R., Sivakumar, M., Faiz, S., Mustafizur, R. A., & Islam, K. (Eds.), Climate change and food security in South Asia (pp. 137–152). Springer: Dordrecht. https://doi.org/10.1007/978-90-481-9516-9_10

  • Lasser, J., Nield, J. M., Ernst, M., Wiggs, G. F. S., Threadgold, M. R., Beaume, C., & Goehring, L. (2023). Salt polygons and porous media convection. Physical Review, 13, 011025. https://doi.org/10.1103/PhysRevX.13.011025

    Article  CAS  Google Scholar 

  • Levy, G. J., & Shainberg, I. (2005). Sodic soils. In: Encyclopedia of soils in the environment (pp. 504–513). Elsevier Ltd. https://doi.org/10.1016/B0-12-348530-4/00218-6

  • Mahmoodabadi, M., Yazdanpanah, N., Sinobas, L. R., Pazira, E., & Neshar, A. (2013). Reclamation of calcareous saline sodic soil with different amendments(I0: Redistribution of soluble cations within the soil profile. Agricultural Water Management, 120, 30–38. https://doi.org/10.1016/j.agwat.2012.08.018

    Article  Google Scholar 

  • Manchanda, H. R. (1976). Quality of ground waters in Haryana (p. 160p). Haryana Agriculture University.

    Google Scholar 

  • Manchanda, M. L., & Khanna, S. S. (1981). Soil salinity and landscape relationship in a part of Haryana state. Journal of the Indian Society of Soil Science, 29, 493–503.

    Google Scholar 

  • Mandal, A. K. (2022a). Soil degradations in the IGP of central Haryana, India-a spatial assessment for reclamation and management. Environmental Monitoring and Assessment, 194, 835. https://doi.org/10.1007/s10661-022-10508-8

    Article  CAS  PubMed  Google Scholar 

  • Mandal, A. K. (2022b). The need for the spectral characterization of dominant salts and recommended methods of soil sampling and analysis for the proper spectral evaluation of salt affected soils using hyper - spectral remote sensing. Remote Sensing Letters, 13(6), 588–598. https://doi.org/10.1080/2150704X.2022.2059414

    Article  Google Scholar 

  • Mandal, A. K. (2023). Necessity for quantified measurement of soil sodicity and selection of suitable gypsum amendment for proper reclamation of sodic soil. Pedosphere, 33(1), 241–245. https://doi.org/10.1016/j.pedsph.2022.06.038

    Article  CAS  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2001). Mapping of waterlogged and salt affected soils in IGNP command area. Journal of the Indian Society of Remote Sensing, 29, 229–235.

    Article  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2005). Computerized database on salt affected soils in Haryana State. Journal of the Indian Society of Remote Sensing, 33, 447–455.

    Article  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2010). Delineation and characterization of waterlogged and salt affected areas in IGNP command, Rajasthan. Journal of the Indian Society of Soil Science, 58, 449–454.

    Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2011a). Computerized Database on salt affected soils for agro-climatic regions in arid & semiarid areas of western & Central India. Annals of Arid Zone, 50, 1–3.

    Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2011b). Delineation and characterization of waterlogged salt affected soils in IGNP using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 39, 39–50.

    Article  Google Scholar 

  • Mandal, A. K., Obi Reddy, G. P., & Ravisankar, T. (2011). Digital database of salt affected soils in India using Geographic Information System. Journal of Soil Salinity and Water Quality, 3, 16–29.

    Google Scholar 

  • Mandal, A. K., Joshi, P. K., Ranbir, S., & Sharma, D. K. (2016a). Characterization of salt-affected soils and poor-quality waters of Kaithal district in Central Haryana for reclamation and management. Journal of the Indian Society of Soil Science, 64(4), 419–426.

    Article  Google Scholar 

  • Mandal, S., Raju, R., Kumar, A., Kumar, P., & Sharma, P. C. (2018). Current status of research, technology response and policy needs of salt-affected soils in India – a review. Journal of Indian Society of Coastal Agriculture Research, 36(2), 40–53.

    Google Scholar 

  • Mandal, A. K., Sharma, R. C., Singh, G., & Dagar, J. C. (2010). Computerized database on salt-affected soils in India (pp. 28). CSSRI/Technical Bull./2/2010, ICAR- Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Mandal, A. K., Sethi, M., Yaduvanshi, N. P. S., Yadav, R. K., Bundela, D. S., Chaudhari, S. K., Chinchmalatpure, A., & Sharma, D. K. (2013). Salt affected soils of Nain experimental farm: site characteristics, reclaimability & potential use (p. 34). Technical Bulletin: CSSRI/Karnal/2013/03, ICAR- Central Soil Salinity Research Institute, Karnal, India.

  • Mandal, A. K., Sharma, D. K., Obi Reddy, G. P., & Ravisankar, T. (2015). Harmonized database on the extent and distribution of salt-affected soils in India. In Proceedings of the workshop on “Waterlogging sand soil salinity in irrigated agriculture” (p 47–61). New Delhi Chandigarh, India: Central Board of Irrigation and Power (CBIP), Central Water Commission (CWC), and Indian Council of Agricultural Research (ICAR). https://www.cbp.org

  • Mandal, A. K., Singh, R., Joshi, P. K., & Sharma, D. K. (2016b). Mapping and characterization of salt-affected soils for reclamation and management – a case study from the Trans- Gangetic Plain of India. In: Patil, N. G., Ray, S. K., Chandran, P., Nagaraju, M. S. S., & Tiwari, P. (Eds.), Sustainable management of land resources for livelihood security. New York: CRC Press.

  • Mandal, A. K. (2016). Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management. Cogent Geoscience 2(1), 213689. https://doi.org/10.1080/23312041.2016.1213689

  • Mandal, A. K. (2019). Modern technologies for diagnosis and prognosis of salt-affected soils and poor-quality waters. In Dagar, J. C., Yadav, R. K., & Sharma, P. C. (Eds.), Research Developments in Saline Agriculture. Singapore Pte. Ltd.: Springer Nature. https://doi.org/10.1007/978-981-13-5832-6_4

  • Narjary, B., Meena, M. D., Kumar, S., Kamra, S. K., Sharma, D. K., & Triantafilis, J. (2019). Digital mapping of soil salinity at various depths using ans EM38. Soil Use and Management, 35, 232–244. https://doi.org/10.1111/sum.12468

    Article  Google Scholar 

  • McBride, M. B. (2022). Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise versus reality. European Journal of Soil Science, 73, e13192. https://doi.org/10.1111/ejss.13192

    Article  CAS  Google Scholar 

  • Minhas, P. S., & Samra, J. S. (2003). Quality assessment of water resources in the Indo-Gangetic basin part of India (p. 68). Technical Bulletin No. 1/2003, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Minhas, P. S., & Samra, J. S. (2004). Wastewater use in peri-urban agriculture: impacts and opportunities (p. 74). Technical Bulletin No. 2/2004, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Minhas, P. S., Yadav, R. K., & Sharma, P. C. (2021). Managing salt-affected soils for sustainable agriculture (pp. 654). New Delhi: Indian Council of Agricultural Research.

  • Misra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontier in Plant Science. https://doi.org/10.3389/fpls.2017.00829

    Article  Google Scholar 

  • Mitra, S., Mehta, P. K., & Misra, S. K. (2021). Farmers’ perception, adaptation to groundwater salinity, and climate change vulnerability: Insights from North India. American Meteorological Society. https://doi.org/10.1175/WCAS-D-20-0135.1

    Article  Google Scholar 

  • Moharana, P. C., Sigh, R. S., Singh, S. K., Tailor, B. L., Jena, R. K., & Meena, M. D. (2019). Development of secondary salinity and salt migration in the irrigated landscape of hot arid India. Enviromental Earth Sciences, 78, 454. https://doi.org/10.1007/s12665-019-8460-4

    Article  ADS  CAS  Google Scholar 

  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.envman.2020.111736

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, R., Fagodiya, R. K., Prajapat, K., Narjary, B., Kumar, S., Singh, R. K., Bundela, D. S., & Barman, A. (2023). Sub-surface drainage: a win-win technology for achieving carbon neutrality and land amelioration in salt-affected Vertisols of India. Geoderma Regional, 35, e00708. https://doi.org/10.1016/j.geodrs.2023.e00708

    Article  Google Scholar 

  • Murtaza, G., Ghafoor, A., Owens, G., Qadir, M., & Kahlon, U. Z. (2009). Environmental and economic benefits of saline-sodic soil reclamation using low-quality water and soil amendments in conjunction with a rice–wheat cropping system. Journal of Agronomy and Crop Science. https://doi.org/10.1111/j.1439-037X.2008.00350.x

    Article  Google Scholar 

  • Murtaza, G., Murtaza, B., & Anwar-Ul-Hassan,. (2015). Management of low-quality water on marginal salt-affected soils with wheat and Sesbania crops. Communications in Soil Science and Plant Analysis, 46(19), 2379–2394. https://doi.org/10.1080/00103624.2015.1081695

    Article  CAS  Google Scholar 

  • NRSC. (2005). Wastelands Atlas of India (p. 95). National Remote Sensing Agency, Department of Space, Government of India, Hyderabad.

    Google Scholar 

  • Narjary, B., Kumar, S., Kamra, S. K., Bundela, D. S., & Sharma, D. K. (2014). Impact of rainfall variability on groundwater resources and opportunities of artificial recharge structure to reduce its exploitation in fresh groundwater zones of Haryana. Current Science, 107(8), 1305–1312.

    Google Scholar 

  • Narjary, B., Kumar, S., Meena, M., Kamra, S. K., & Sharma, D. K. (2022). Spatio-temporal mapping and analysis of soil salinity: an integrated approach through electromagnetic induction (EMI), multivariate and geostatistical techniques. Geocarto International, 37(25), 8602–8623. https://doi.org/10.1080/10106049.2021.2002952

    Article  ADS  Google Scholar 

  • Negacz, K., Malek, Z., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203, 104775. https://doi.org/10.1016/j.jaridenv.2022.104775

    Article  ADS  Google Scholar 

  • NRSA. (1997). Salt-Affected Soils. Hyderabad: National Remote Sensing Agency, Department of Space, Government of India.

  • NRSC. (2019). Status of Land Degradation in India: 2015–16 Atlas (p. 142). National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad.

    Google Scholar 

  • NRSC. (2007). Natural resource census nationwide mapping of land degradation using multi-temporal satellite data- NRC land degradation project manual (p. 134). Soils Division, Earth Resource Group, RS & GIS Applications Area, National Remote Sensing Agency, Department of Space, Government of India, Hyderabad. www.nrsc.gov.in

  • NRSC. (2008). Mapping salt-affected soils of India (p 60). Soils Division, RS & GIS Application Area, National Remote Sensing Agency (Center), Department of Space, Government of India, Hyderabad.

  • NRSC. (2014). Normalized difference vegetation index (NDVI) products by using OCM2‐GAC sensor data for BHUVAN NOEDA (p. 4). SDAPSA National Remote Sensing Centre, Department of Space, Government of India, Hyderabad, India.

  • NRSC. (2019). Wasteland atlas of India (p. 246). Department of Land Resources Ministry of Rural Development, Government of India and National Remote Sensing Center, Indian Space Research Organization, Department of Space, Government of India, Hyderabad, India.

  • NRSC. (2021). Wasteland Atlas of India. Hyderabad, India: Department of Land Resources Ministry of Rural Development, Government of India and National Remote Sensing Center, Indian Space Research Organization, Department of Space, Government of India.

  • Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24, 223–234. https://doi.org/10.1111/j.1475-2743.2008.00169x

    Article  Google Scholar 

  • Ortiz, A. C., & Jin, L. (2021). Chemical and hydrological controls on salt accumulation in irrigated soils of southwestern U. S. Geoderma, 391, 114976. https://doi.org/10.1016/j.geoderma.2021.114976

    Article  ADS  CAS  Google Scholar 

  • Oster, J. D. (1993). Sodic soil reclamation. In: Leith, H. & Masoom, A. A. (Eds.), Towards the rational use of high salinity tolerant plants (Vol. I, pp. 485–490). Kluwer Academic Publishers.

  • Paulraj, A. & Muraligopal, S. (2013). Factors influencing soil reclamation measures: Evidence and Implication.

  • Promila, Mothi Kumar, K. E. & Sharma, P. (2018). Monitoring the spatial distribution of degraded land in Sirsa district. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India, Vol. IV-5, TC V.

  • Qadir, M., Sposito, G., Smith, C. J., & Oster, J. D. (2021). Reassessing irrigation water quality guidelines for sodicity hazard. Agricultural Water Management, 255, 107054. https://doi.org/10.1016/j.agwat.2021.107054

    Article  Google Scholar 

  • Rao, B. R. M., Ravisankar, T., Dwivedi, R. S., Thamappa, S. S., Venkatratnam, L., Sharma, R. C., & Das, S. N. (1995). Spectral behavior of salt affected soils. International Journal of Remote Sensing, 16, 2125–2136. https://doi.org/10.1080/01431169508954548

    Article  ADS  Google Scholar 

  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. A CSIRO Publishing Review. Functional Plant Biology, 37, 613–620.

    Article  Google Scholar 

  • Richards, L. A. (Ed.) (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No. 60, p. 159. Washington, DC: United States Department of Agriculture.

  • SAC. (2021). Desertification and land degradation atlas of India (Assessment and analysis of changes over 15 years based on remote sensing). Space Application Center (SAC), Indian Space Research Organization (ISRO), Department of Space, Govt. of India, Ahmedabad. 

  • Sachdev, C. B., Lal, T., Rana, K. P. C., & Sehgal, J. (1995). Soil of Haryana: their kinds, distribution, and interpretation for optimizing land use, NBSS Publ. 44 (Soils of India Series 4, p 59). Nagpur, India: National Bureau of Soil Survey and Land Use Planning.

  • Santosh Kumar, M., & Thiyageswari, S. (2018). Performance of nano-gypsum on reclamation of sodic soils. International Journal of Current Microbiology and Apllied Sciences, 6, 56–62.

    Google Scholar 

  • Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2015). Regional scale soil salinity assessment using Landsat ETM + canopy reflectance. Remote Sensing of Environment, 169, 335–343. https://doi.org/10.1016/j.rse.2015.08.026

    Article  ADS  Google Scholar 

  • Sethi, M., Khurana, M. L., Bhambri, R., Bundela, D. S., Gupta, S. K., Ram, S., Chinchmalatpure, A., Chaudhuri, S. K., & Shamra, D. K. (2012). Appraisal of salt-affected and waterlogged soils in Rohtak, Bhwani, Jind, and Jhajjar districts of Haryana using remote sensing and GIS ( p. 28). Technical Bulletin No. CSSRI/Karnal/2012/2, iCAR- Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Sethi, M., Basak, N., Datta, A., Chinchmalatpure, A., Khurana, M. L., Yadav, A. K., Barman, A., & Yadav, R. K. (2018). Mapping and extent of salt-affected soils in Rewari and Mahendragarh districts of Haryana state using remote sensing and GIS (pp. 1–43). Technical Bulletin No. ICAR-CSSRI/Karnal/2018/07, ICAR- Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Sharma, D. P. (1986). Effect of gypsum application on long-term changes in soil properties and crop growth in sodic soils under field conditions. Journal of Agronomy & Crop Sciences, 156, 166–172.

    Article  CAS  Google Scholar 

  • Sharma, R. C. (1999). Soil suitability of reclaimed salt affected soil for wheat. Agropedology, 9, 59–62.

    Google Scholar 

  • Sharma, R. C., & Bhargava, G. P. (1981). Morphogenetic changes in an alkali (sodic) soil pedon during amelioration through gypsum application. Journal of the Indian Society of Soil Science, 29(2), 274–277.

    CAS  Google Scholar 

  • Sharma, R. C., & Mondal, A. K. (2006). Mapping of soil salinity and sodicity using digital image analysis and GIS in irrigated lands of the Indo-Gangetic plain. Agropedology, 16, 71–76.

    CAS  Google Scholar 

  • Sharma, R. C., Saxena, R. K., & Verma, K. S. (2000). Reconnaissance mapping & management of salt affected soils using satellite images. International Journal of Remote Sensing, 21, 3209–3218.

    Article  ADS  Google Scholar 

  • Sharma, R. C., Saxena, R. K., Verma, K. S., & Mandal, A. K. (2008). Characteristics and reclaimability of sodic soils in the alluvial plain of Etah district, Uttar Pradesh. Agropedology, 18, 76–82.

    Google Scholar 

  • Sharma, R. C., Mandal, A. K., Singh, R., & Singh, Y. P. (2011). Characteristics and use potential of sodic and associated soils in CSSRI experimental farm, Lucknow, Uttar Pradesh. Journal of the Indian Society of Soil Science, 59, 381–387.

    CAS  Google Scholar 

  • Sharma, R. C., & Abrol, I. P. (1980). Quality of groundwater of Kaithal tehsil, Haryana (pp. 1–72). Report No. 09, Division of Soil and Agronomy, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Sharma, R. C., & Bhargava, G. P. (1978). Soil survey at the operational research project area for the reclamation of alkali soils (pp. 1–71). Report No. 08, Division of Soils and Agronomy, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Sharma, R. C., & Bhargava, G. P. (1987). Operational use of SPOT image in mapping and management of alkali soils. In: Proceedings of the national symposium on "Remote Sensing in Land Transformation and Management". National Remote Sensing Agency, Department of Space, Hyderabad, India.

  • Sharma, R. C., Abrol, I. P., & Bhumbla, D. R. (1976). Quality of ground waters of Karnal district Haryana. Report No. 03,  pp. 1–24. Division of Soil and Agronomy, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Sharma, R. C., Singh, G., & Vashist, S. N. (2007). Madhuban meadow, diagnosis and amelioration of alkali soils in the golf course at the Haryana Armed police Madhuban, Karnal- Haryana (p. 12). Bulletin 3/2007, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India and Haryana Armed Police, Madhuban, Karnal, Haryana, India.

  • Sharma, S. K., Dagar, J. C., & Singh, G. (2010). BIOSAFOR- Biosaline (Agro) Forestry: Remediation of saline wastelands through producing renewable energy, biomaterials, and fodder (pp. 26). Technical Bulletin CSSRI/Karnal/2010/4, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Sharma, D. K., Thimmppa, K., Chinchmalatpure, A. R., Mandal, A. K., Yadav, R. K., Chaudhari,S. K., Kumar, S., & Sikka, A. K. (2015). Assessment of production and monetary losses from salt-affected soils of India. Technical Bulletin: ICAR-CSSRI/Karnal/2015 /05, ICAR-Central Soil Salinity Research Institute, Karnal India.

  • Sheoran, P., Kumar, A., Sharma, R., Barman, A., Prajapat, K., Sigh, R. K., Kuamr, S., Sharma, P. C., Ismail, A. M., & Singh, R. K. (2021). Managing sodic soils for better productivity and farmer’s income by integrating use of salt tolerant rice varieties and matching agronomic practices. Field Crop Research, 270, 108192. https://doi.org/10.1016/j.fcr.2021.108192

    Article  Google Scholar 

  • Singh, R. B. (2000). Environmental consequences of agricultural development: A case study from the green revolution state of Haryana, India. Agriculture, Ecosystems & Environment, 82, 97–103.

    Article  Google Scholar 

  • Singh, G. B. (2009). Salinity related desertification and management strategies: Indian experience. Land Degradation and Development, 20, 367–385.

    Article  Google Scholar 

  • Singh, A. (2018). Alternate management options for irrigation induced salinization and waterlogging under different climatic conditions. Ecological Indicators, 90, 184–192. https://doi.org/10.1016/j.ecolind.2018.03.014

    Article  ADS  Google Scholar 

  • Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38, 39–67. https://doi.org/10.1111/sum.12772

    Article  Google Scholar 

  • Singh, A. N., & Dwivedi, R. S. (1980). Delineation of salt affected soils through digital analysis of Landsat data. International Journal of Remote Sensing, 10, 83–92.

    Article  ADS  Google Scholar 

  • Singh, J., & Singh, J. P. (1995). Land degradation and economic sustainability. Ecological Economics, 15, 77–86.

    Article  Google Scholar 

  • Singh, G. B., Abrol, I. P., & Cheema, S. S. (1989). Effects of gypsum application on mesquite (Prosopis juliflora) and soil properties in an abandoned sodic soil. Forest Ecology and Management, 29, 1–14.

    Article  Google Scholar 

  • Singh, G., Mehta, K. K., Sharma, R. C., Chawla, K. L., Joshi, P. K., & Yaduvanshi, N. P. S. (2007). Sand mining or no mining in agricultural fields in Haryana. Technical Bulletin, 5, 32.

    Google Scholar 

  • Singh, G., Bundela, D. S., Sethi, M., Lal, K., & Kamra, S. K. (2010). Remote sensing and geographic information system for appraisal of salt-affected soils in India. Journal of Environmental Quality, 39, 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. K., Singh, R., Kumar, S., Narjary, B., Kamra, S. K., & Sharma, D. K. (2014). Productive utilization of sodic water for aquaculture-led integrated farming system: A case study. Journal of Soil Salinity and Water Quality, 6(1), 28–35.

    Google Scholar 

  • Singh, Y. P., Singh, G., Singh, B., & Cerdă, A. (2017). Restoration of degraded salt-affected lands to productive forest ecosystem. Geophysical Research Abstracts, 19, 1473.

    Google Scholar 

  • Singh, Y. P., Arora, S., Mishra, V. K., & Bhardwaj, A. K. (2022). Regaining the agricultural potential of sodic soils and improved smallholder food security through integration of gypsum, pressmud, and salt tolerant varieties. Agroecology and Sustainable Food Systems, 46(3), 410–431. https://doi.org/10.1080/21683565.2021.2015735

    Article  Google Scholar 

  • Singh, Y. P., Arora, S., Mishra, V. K., & Singh, A. K. (2023). Rationalizing gypsum use through microbially enriched municipal solid waste compost for amelioration and regaining productivity potential; of degraded alkali soiuls. Scientific Reports, 13, 11812. https://doi.org/10.1038/s41598-023-37823-5

    Article  ADS  CAS  Google Scholar 

  • Singh, G. B., & Dagar, J. C. (2005). Greening sodic lands: Bichhian Model. Technical Bulletin No. 2/2005, ICAR- Central Soil Salinity Research Institute, Karnal, Haryana, India,. pp. 51.

  • Singh, G. B., & Mandal, A. K. (2009). Advances in the assessment of salt-affected soils for mapping, monitoring, and management strategies in India. In: Advances in the assessment and monitoring of salinization and status of bio-saline agriculture (p. 72). Report of an expert consultation held in Dubai, United Arab Emirates, November 26–29, 2007, World Resource Report No. 104, Food and Agricultural Organization of the United Nations (FAO), Rome.

  • Singh, K. N., & Sharma, P. C. (2005). Crop improvement for management of salt-affected soils, A training manual. In Methods of screening and development of varieties and germplasm of various crops for salt-affected soils (p. 216). held at ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India, January 17–22, 2005.

  • Singh, R. K., Singh, A., & Sharma, P. C. (2019). Successful adaptations in salt-affected agro-ecosystems of India (p. 117). ICAR- Central Soil Salinity Research Institute, Karnal, Haryana, India.

  • Singh, A. (2021). Soil salinization management for sustainable development: A Review. Journal of Environ Management. https://doi.org/10.1016/j.jenvman.2020.111383

  • Singh, G. B. (2019) Recent advances in salinity management in agriculture. Indian Experience. In: Proceedings of the 3rd World Irrigation Forum (WIF3), held September, 1-7 2019, in Bali Indonesia.

  • Sklenicka, P., Zouhar, J., Molarnova, K. J., Vlasak, J., Kottova, B., Petrzelka, P., Gebhart, M., & Walmsley, A. (2020). Trends of soil degradations: Does the socio-economic status of land owners and land users matter? Land Use Policy, 95, 103992. https://doi.org/10.1016/j.landusepol.2019.05.011

    Article  Google Scholar 

  • Sreenivas, K., Sujatah, G., Mitran, T., Janaki, R., Suresh, K. G., Ravisankar, T., & Rao, P. V. N. (2021). Decadal changes in land degradation status of India. Current Science, 121, 539–550. https://doi.org/10.18520/cs/v121/i4/539-550

    Article  Google Scholar 

  • Srivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Science, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  Google Scholar 

  • Stavi, I., & Lal, R. (2015). Achieving zero net land degradation: Challenges and opportunities. Journal of Arid Environment, 112, 44–51. https://doi.org/10.1016/j.jaridenv.2014.01.016

    Article  ADS  Google Scholar 

  • Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. https://doi.org/10.3389/fenvs.2021.712831

    Article  Google Scholar 

  • Sundha, P., Basak, N., Rai, A. K., Yadav, R. K., Sharma, P. C., & Sharma, D. K. (2020). Can conjunctive use of gypsum, city waste composts and marginal quality water rehabilitate saline-sodic soils? Soil & Tillage Research, 200, 104608. https://doi.org/10.1016/j.still.2020.104608

    Article  Google Scholar 

  • Sundha, P., Mukhopadhyaya, R., Basak, N., Rai, A. K., Bedwal, S., Patel, S., Kaur, H., Chandra, P., Sharma, P. C., Saxena, S. K., Parihar, S. S., & Yadav, R. K. (2023). Characterization of flue gas desulfurized (FGD) and its relevant risk of associated potential toxic elements in sodic soil reclamation. Scientific Reports, 13, 19787. https://doi.org/10.1038/s41598-023-45706-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttons, P. C., Anderson, S. J., Costanza, R., & Kubiszewski, I. (2016). The ecological economics of land degradation: Impact of ecosystem service values. Ecological Economics, 129, 182–192. https://doi.org/10.1016/j.ecolecon.2016.06.016

    Article  Google Scholar 

  • Swarup, A. (1987). Effect of pre-submergence and green manuring (Sesbania aculeata) on nutrition and yield of wetland rice (Oryza sativa L.) on a sodic soil. Biology and Fertility of Soils, 5, 203–208.

    Article  Google Scholar 

  • Szabolcs, I. (1989). Salt Affected Soils (p. 274p). CRC Press.

    Google Scholar 

  • Tang, S., She, D., & Wang, H. (2020). Effect of salinity on soil structure and soil hydraulic characteristics. Canadian Journal of Soil Science. https://doi.org/10.1139/cjss-2020-0018

    Article  Google Scholar 

  • Thimmappa, K., Singh, Y. P., Raju, R., Tripathi, R. S., Kumar, S., Senthil, R., & Mitrannavar, D. (2014). Declining farm productivity and profitability due to soil degradation in north India. Journal of Wheat Research, 7(2), 45–51.

    Google Scholar 

  • Toth, T. (2022). Review of sodic soil reclamation with a snapshot of current research activity. Chinese Geographical Science. https://doi.org/10.1007/s11769-022-1310-4

  • Tripathi, R. S. (2013). Return to investment made for alkali land reclamation technology in India. Journal of Soil Salinity and Water Quality, 5(1), 65–72.

    Google Scholar 

  • Turner, K. G., Anderson, S., Gonzales- Chang, M., Costanza, R., Courville, S., Dalgaard, T., Dominati, E., Kubiszewski, I., Ogilvy, S., Porfirio, L., Ratna, L., Sandhu, H., Suttons, P. C., Jens-Christian, S., Turner, G. M., Varennes, A. V., & Wratten, S. (2016). A review of methods, data, models to assess changes in the value of ecosystem services from land degradation and restoration. Ecological Modelling, 319, 190–207. https://doi.org/10.1016/j.ecolmodel.2015.07.017

    Article  Google Scholar 

  • UN. (2021). 1.5 billion people, living with soil too salty to be fertile. In UN News: Global perspective human stories on Climate and Environment. United Nations, October 20, 2021.

  • USDA. (2014). Salinity and irrigation water management guide. http://www.nrcs.usda.gov

  • Venkata Subbaiah, P., Radha Krishna, Y., & Kaledhonkar, M. J. (2022). Quality assessment of groundwater of Kadapa district, Andhra Pradesh, India for irrigation purpose and management options. Current Science, 122(10), 1185–1192. https://doi.org/10.18520/cs/v122/i10/1185-1192

    Article  Google Scholar 

  • Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaisar, T., Turkenburg, W., & Faaij, A. (2011). The global technical and economic potential of bioenergy from salt affected soils. Energy & Environmental Science, 4, 2669–2681.

    Article  Google Scholar 

  • Zhang, T. T., Zeng, S. L., Gao, Y., Quyang, Z. T., Li, B., Fang, Chang-Ming., & Zhao, B. (2011). Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 11(6), 1552–1562. https://doi.org/10.1016/j.ecolind.2011.03.025

    Article  Google Scholar 

  • Zhang, T. T., Qi, J. G., Gao, Y., Ouyang, Z. T., Zeng, S. L., & Zhao, B. (2015). Detecting soil salinity with MODIS time series VI data. Ecological Indicators, 52, 180–489. https://doi.org/10.1016/j.ecolind.2015.01.004

    Article  Google Scholar 

  • Zhao, W., Zhou, C., Zhou, C., Ma, H., & Wang, Z. (2022). Soil salinity inversion model of oasis in arid area based on UAV multispectral remote sensing. Remote Sensing, 14(8), 1804. https://doi.org/10.3390/rs14081804

    Article  ADS  Google Scholar 

  • Zhang, C., Mishra, D. R., & Pennings, S. C. (2019). Mapping salt marsh soil properties using imaging spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 221234. https://doi.org/10.1016/j.isprsjprs.2019.01.006

    Article  Google Scholar 

  • Zhu, G., Xu, Y., Xu, Z., Ahmad, I., Nimir, E. N. A., & Zhou, G. (2022). Improving productivity of Sesbania pea in saline soils by enhancing antioxidant capacity with optimum application of nitrogen and phosphate combination. Frontier in Plant Science. https://doi.org/10.3389/fpls.2022.1027227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author is responsible for the preparation of the whole manuscript, data analysis, and collection.

Corresponding author

Correspondence to Arup Kumar Mandal.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.K. Spatial assessment and chemical characterization of degraded (salt-affected) soils at post-reclamation stage of the Indo-Gangetic Plain in Haryana State. Environ Monit Assess 196, 213 (2024). https://doi.org/10.1007/s10661-023-12197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12197-3

Keywords

Navigation