Skip to main content
Log in

Prediction of total phosphorus in reservoir cascade systems

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Reservoir cascade systems have attracted the attention of scientists worldwide. The present study investigates the cascade of five reservoirs (R1, R2, R3, R4, and R5) along a 192-km water channel system located in the state of Ceará, in the Brazilian semiarid region. This cascade system was implemented in 2012 to promote water availability and security to the capital of Ceará and the strategic industry and port complex of the region. However, these reservoirs have faced a progressive degradation of water quality, which has resulted in intense eutrophication and high-water treatment costs. The study evaluates the dynamics of water quality from 2013 to 2021 along this reservoir cascade (from R1 to R5). The results revealed that water quality did not improve along the cascade system, differently from previous studies on reservoirs interconnected by natural rivers. This was attributed to the low water residence time and low capacity of pollutant removal along the man-made water channel system, as well as to the high internal phosphorus loads of the reservoirs. Multiple regression models involving the explanatory variables of total phosphorus, total nitrogen, chlorophyll-a, cyanobacteria, transparency, rainfall, and volume from upstream reservoirs were obtained to determine total phosphorus concentration in downstream reservoirs, considering different combinations of reservoir pairs in the cascade and different time delays. A clear trend of R2 decline with the distance between the upstream and downstream reservoirs was observed. For example, the R2 values for the correlations adjusted between R1 and R2 (48 km), R1 and R3 (172 km), R1 and R4 (178 km), and R1 and R5 (192 km) were 0.66, 0.32, 0.22, and 0.12, respectively. On the other hand, the adoption of time delays of the order of the cumulative residence times of the reservoirs promoted a significant improvement in the R2 values. For instance, the best correlation adjusted between R1 and R5 improved from R2 = 0.12 to 0.69 by considering a time delay of 21 months. This suggests that previous data from upstream reservoirs can be used to predict current and future total phosphorus concentration in downstream reservoirs. The results from this study are important to better understand the spatiotemporal dynamics of water quality in reservoir cascade systems and thus improve water resources management, especially in drylands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available upon request.

References

Download references

Acknowledgements

The authors thank the Water Resources Management Company of Ceará (COGERH) for providing the field data.

Funding

The present study was supported through the Brazilian National Council for Scientific and Technological Development—CNPq (Research Grant 150326/2022–0).

Author information

Authors and Affiliations

Authors

Contributions

MCAG: conceptualization, formal analysis, investigation, methodology, and writing—original draft preparation; MUGB: conceptualization and writing—reviewing and editing; and IELN: conceptualization, formal analysis, writing—reviewing and editing, supervision, and project administration.

Corresponding author

Correspondence to Iran Eduardo Lima Neto.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goes, M.C.A., Barros, M.U.G. & Neto, I.E.L. Prediction of total phosphorus in reservoir cascade systems. Environ Monit Assess 195, 1550 (2023). https://doi.org/10.1007/s10661-023-12155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12155-z

Keywords

Navigation