Skip to main content

Advertisement

Log in

Survival tactics of an endangered species Withania coagulans (Stocks) Dunal to arid environments

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Withania coagulans is a valuable medicinal plant with high demand, but its wild growth and local usage pose a threat to its natural habitat. This study aims to understand the plant’s growth, anatomy, and physiology in different environmental conditions to aid in conservation and re-vegetation efforts. Fifteen differently adapted populations of Withania coagulans were collected from diverse ecological regions, viz., (i) along the roadside, (ii) hilly areas, (iii) barren land, and (iv) wasteland to unravel the adaptive mechanisms that are responsible for their ecological success across heterogenic environments of Punjab, Pakistan. The roadside populations had high values of photosynthetic pigments, total soluble proteins, root endodermis thickness, stem and leaf cortical thickness, and its cell area. The populations growing in hilly areas showed better growth performance such as vigorous growth and biomass production. Additionally, there was enhanced accumulation of organic osmolytes (glycine betaine and proline), chlorophyll content (chl a/b), and enlarged epidermal cells, cortical cells, vascular bundles, metaxylem vessels, and phloem region in roots. In case of stem area, epidermal thickness, cortical thickness, vascular bundle, and pith area showed improved growth. However, the barren land population showed significant increase in carotenoid contents, vascular bundle area, and metaxylem area in roots, and xylem vessels and phloem area in stems and leaves. The wasteland population surpassed the rest of the populations in having greater root dry weight, higher shoot ionic contents, increased root area, thick cortical, and vascular bundle area in roots. Likewise, cortical thickness and its cell area, and pith area in stems, whereas large vascular bundles, phloem region, and high stomatal density were recorded in leaves. Subsequently, natural populations showed the utmost behavior related to tissue organization and physiology in response to varied environmental conditions that would increase the distribution and survival of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  • Ahmad, K. S., Hameed, M., Hamid, A., Nawaz, F., Kiani, B. H., Ahmad, M. S. A., & Fatima, S. (2018). Beating cold by being tough: Impact of elevation on leaf characteristics in Phleum himalaicum Mez. endemic to Himalaya. Acta Physiologiae Plantarum, 40, 1–17.

    Article  Google Scholar 

  • Ahmad, K. S., Wazarat, A., Mehmood, A., Ahmad, M. S. A., Tahir, M. M., Nawaz, F., & Ulfat, A. (2020). Adaptations in Imperata cylindrica (L.) Raeusch. and Cenchrus ciliaris L. for altitude tolerance. Biologia, 75, 183–198.

    Article  CAS  Google Scholar 

  • Ahmad, I., Sohail, M., Hameed, M., Fatima, S., Ahmad, M. S. A., Ahmad, F., & Ahmad, K. S. (2023). Morpho-anatomical determinants of yield potential in Olea europaea L. cultivars belonging to diversified origin grown in semi-arid environments. Plos one, 18(6), e0286736.

    Article  CAS  Google Scholar 

  • Akcin, T. A., Akcin, A., & Yalcın, E. (2017). Anatomical changes induced by salinity stress in Salicornia freitagii (Amaranthaceae). Brazilian Journal of Botany, 40(4), 1013–1018.

    Article  Google Scholar 

  • Alvarez, J. M., Rocha, J. F., & Machado, S. R. (2008). Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): Structure in relation to function. Brazilian archives of biology and technology, 51, 113–119.

    Article  Google Scholar 

  • Anderson, J. T., & Wadgymar, S. M. (2020). Climate change disrupts local adaptation and favours upslope migration. Ecology Letters, 23, 181–192.

    Article  Google Scholar 

  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77.

    Article  CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.

    Article  CAS  Google Scholar 

  • Bahaji, A., Mateu, I., Sanz, A., & Cornejo, M. J. (2002). Common and distinctive responses of rice seedlings to saline-and osmotically generated stress. Plant Growth Regulation, 38(1), 83–94.

    Article  CAS  Google Scholar 

  • Bano, C., Amist, N., & Singh, N. B. (2019). Morphological and anatomical modifications of plants for environmental stresses. In A. Roychoudhury & D. Tripathi (Eds.), Molecular plant abiotic stress: Biology and biotechnology (pp. 29–44). Wiley.

    Chapter  Google Scholar 

  • Bates, L., et al. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  • Breinholt, J. W., Van Buren, R., Kopp, O. R., & Stephen, C. L. (2009). Population genetic structure of an endangered Utah endemic, Astragalus ampullarioides (Fabaceae). American Journal of Botany, 96(3), 661–667.

    Article  Google Scholar 

  • Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., & Poloczanska, E. S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495.

    Article  CAS  Google Scholar 

  • Chavoshi, S., Nourmohamadi, G., Madani, H., Abad, H. S., & H., Alavi Fazel, M. (2018). The effects of biofertilizers on physiological traits and biomass accumulation of red beans (Phaseolus vulgaris cv. Goli) under water stress. Iranian. Journal of Plant Physiology, 8(4), 2555–2562.

    Google Scholar 

  • Datta, S. K., & Som, J. (1973). Effect of salinity on structural-changes in stem of rice varieties. Indian Journal of Agricultural Sciences, 43(6), 614–617.

    Google Scholar 

  • Davis, D., Armond, P., Gross, E., & Arntzen, C. J. (1976). Differentiation of chloroplast lamellae onset of cation regulation of excitation energy distribution. Archives of Biochemistry and Biophysics, 175(1), 64–70. https://doi.org/10.1016/0003-9861(76)90485-9

    Article  CAS  Google Scholar 

  • De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In Plant responses to drought stress (pp. 37–61). Springer.

    Chapter  Google Scholar 

  • Dickman, E. E., Pennington, L. K., Franks, S. J., & Sexton, J. P. (2019). Evidence for adaptive responses to historic drought across a native plant species range. Evolutionary Applications, 12, 1569–1582.

    Article  Google Scholar 

  • Drake, P. L., De Boer, H. J., Schymanski, S. J., & Veneklaas, E. J. (2019). Two sides to every leaf: Water and CO2 transport in hypostomatous and amphistomatous leaves. New Phytologist, 222(3), 1179–1187.

    Article  CAS  Google Scholar 

  • Eraslan, F. I. G. E. N., Polat, M., Yildirim, A., & Kucukyumuk, Z. (2016). Physiological and nutritional responses of two distinctive Quince (Cydonia oblonga Mill.) rootstocks to boron toxicity. Pakistan Journal of Botany, 48(1), 75–80.

    CAS  Google Scholar 

  • Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., & Feeley, K. J. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735), 207–212.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. In Sustainable agriculture (pp. 153–188). Springer.

    Chapter  Google Scholar 

  • Fatima, S., Hameed, M., Ahmad, F., Ahmad, M.S.A, Khalil, S., Munir, M., Kaleem, M. (2022). Structural and functional responses in widespread distribution of some dominant grasses along climatic elevation gradients. Flora, 289, 152034.

  • Fatima, S., Hameed, M., Ahmad, F., Ashraf, M., & Ahmad, R. (2018). Structural and functional modifications in a typical arid zone species Aristida adscensionis L. along altitudinal gradient. Flora, 249, 172–182.

    Article  Google Scholar 

  • Fatima, S., Hameed, M., Ahmad, F., Ahmad, M. S. A., Anwar, M., Munir, M., & Khalil, S. (2023). Dramatic changes in anatomical traits of a C4 grass Chrysopogon serrulatus Trin.(Poaceae) over a 1000 m elevational gradient. Journal of Mountain Science, 20(5), 1316–1335.

    Article  Google Scholar 

  • Galindo, A., Collado-González, J., Griñán, I., Corell, M., Centeno, A., Martín-Palomo, M. J., & Pérez-López, D. (2018). Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agricultural Water Management, 202, 311–324.

    Article  Google Scholar 

  • Ghilavizadeh, A., Hadidi Masouleh, E., Zakerin, H. R., Valadabadi, S. A. R., Sayfzadeh, S., & Yousefi, M. (2019). Influence of salicylic acid on growth, yield and macro-elements absorption of fennel (Foeniculum vulgare Mill.) under water stress. Journal of Medicinal Plants and By-product, 8(1), 67–75.

    Google Scholar 

  • Gilani, S. A., Kikuchi, A., & Watanabe, K. N. (2009). Genetic variation within and among fragmented populations of endangered medicinal plant, Withania coagulans (Solanaceae) from Pakistan and its implications for conservation. African Journal of Biotechnology, 8(13).

  • Grattan, S., & Grieve, C. (1985). Betaine status in wheat in relation to nitrogen stress and to transient salinity stress. Plant and Soil, 85, 3–9.

    Article  CAS  Google Scholar 

  • Guo, W. Y., van Kleunen, M., Winter, M., Weigelt, P., Stein, A., Pierce, S., & Pyšek, P. (2018). The role of adaptive strategies in plant naturalization. Ecology Letters, 21(9), 1380–1389.

    Article  Google Scholar 

  • Hameed, M., Ashraf, M., Naz, N., & Al-Qurainy, F. (2010). Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range Pakistan to salinity stress. I. Root and stem anatomy. Pakistan Journal of Botany, 42(1), 279–289.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 2014. https://doi.org/10.1155/2014/589341

  • Hwang, Y. H., & Chen, S. C. (1995). Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Botanical Bulletin of Academia Sinica, 36.

  • Iqbal, U., Hameed, M., Ahmad, F., Ahmad, M. S. A., Naz, N., Ashraf, M., & Kaleem, M. (2023). Modulation of structural and functional traits in facultative halophyte Salvadora oleoides Decne. For adaptability under hyper-arid and saline environments. Journal of Arid Environments, 213, 104965.

    Article  Google Scholar 

  • Iqbal, U., Hameed, M., Ahmad, F., Ahmad, M. S. A., Ashraf, M., Kaleem, M., & Irshad, M. (2022). Contribution of structural and functional modifications to wide distribution of Bermuda grass Cynodon dactylon (L.) Pers. Flora, 286, 151973.

    Article  Google Scholar 

  • Kaleem, M., Hameed, M., Ahmad, F., Ashraf, M., & Ahmad, M. S. A. (2022). Anatomical and physiological features modulate ion homeostasis and osmoregulation in aquatic halophyte Fimbristylis complanata (Retz.) link. Acta Physiologiae Plantarum, 44(6), 1–13.

    Article  Google Scholar 

  • Kowalenko, C. G., & Lowe, L. E. (1973). Determination of nitrates in soil extracts. Soil Science Society of America Journal, 37(4), 660.

    Article  CAS  Google Scholar 

  • Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10(15), 8166–8175.

    Article  Google Scholar 

  • Lopes, D. M., Walford, N., Viana, H., & Sette Junior, C. R. (2016). A proposed methodology for the correction of the leaf area index measured with a ceptometer for Pinus and Eucalyptus forests. Revista Árvore, 40, 845–854. https://doi.org/10.1590/0100-67622016000500008

    Article  Google Scholar 

  • Maimaitiyiming, M., Ghulam, A., Bozzolo, A., Wilkins, J. L., & Kwasniewski, M. T. (2017). Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy. Remote Sensing, 9(7), 745.

    Article  Google Scholar 

  • Mansoor, U., Fatima, S., Hameed, M., Naseer, M., Ahmad, M. S. A., Ashraf, M., & Waseem, M. (2019). Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert. Flora, 261, 151485.

    Article  Google Scholar 

  • Mumtaz, S., Saleem, M. H., Hameed, M., Batool, F., Parveen, A., & S.F., Alyemeni, M.N. (2021). Anatomical adaptations and ionic homeostasis in aquatic halophyte Cyperus laevigatus L. under high salinities. Saudi Journal of Biological Sciences, 28(5), 2655–2666.

    Article  CAS  Google Scholar 

  • Naskar, S., & Palit, P. K. (2015). Anatomical and physiological adaptations of mangroves. Wetlands Ecology and Management, 23(3), 357–370.

    Article  Google Scholar 

  • Nawaz, T., Hameed, M., Ashraf, M., Ahmad, M. S. A., Batool, R., & Fatima, S. (2014). Anatomical and physiological adaptations in aquatic ecotypes of Cyperus alopecuroides Rottb. under saline and waterlogged conditions. Aquatic Botany, 116, 60–68.

    Article  Google Scholar 

  • Negi, M. S., Sabharwal, V., Wilson, N., & Lakshmikumaran, M. S. (2006). Comparative analysis of the efficiency of SAMPL and AFLP in assessing genetic relationships among Withania somnifera genotypes. Current Science, 91, 464–471.

    CAS  Google Scholar 

  • Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542.

    Article  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office.

    Google Scholar 

  • Pescador, D. S., de Bello, F., Valladares, F., & Escudero, A. (2015). Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS One, 10(3), e0118876.

    Article  Google Scholar 

  • Pessarakli, M., Haghighi, M., & Sheibanirad, A. (2015). Plant responses under environmental stress conditions. Advances in Plants & Agriculture Research, 2(6), 00073.

    Article  Google Scholar 

  • Rahmat, A., Kumar, V., Fong, L. M., Endrini, S., & Sani, H. A. (2003). Determination of total antioxidant activity in three types of local vegetables shoots and the cytotoxic effect of their ethanolic extracts against different cancer cell lines. Asia Pacific Journal of Clinical Nutrition, 12(3), 308–311.

    Google Scholar 

  • Rayner, J. P., Farrell, C., Raynor, K. J., Murphy, S. M., & Williams, N. S. (2016). Plant establishment on a green roof under extreme hot and dry conditions: The importance of leaf succulence in plant selection. Urban Forestry & Urban Greening, 15, 6–14.

    Article  Google Scholar 

  • Rohit, J., & Sumita, K. (2012). Phytochemistry, pharmacology, and biotechnology of Withania somnifera and Withania coagulans: A review. Journal of Medicinal Plants Research, 6(41), 5388–5399.

    Article  Google Scholar 

  • Ruzin, S. E. (1999). Plant microtechnique and microscopy (Vol. 198, p. 322). Oxford University Press.

    Google Scholar 

  • Sasi, M., Kumar, S., Kumar, M., Thapa, S., Prajapati, U., Tak, Y., & Mekhemar, M. (2021). Garlic (Allium sativum L.) bioactives and its role in alleviating oral pathologies. Antioxidants, 10(11), 1847.

    Article  CAS  Google Scholar 

  • Saska, P., Skuhrovec, J., Tylová, E., Platková, H., Tuan, S. J., Hsu, Y. T., & Vítámvás, P. (2021). Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. Journal of Pest Science, 94, 423–434.

    Article  Google Scholar 

  • Seemann, J. R., Berry, J. A., & Downton, W. J. S. (1984). Photosynthetic response and adaptation to high temperature in desert plants: A comparison of gas exchange and fluorescence methods for studies of thermal tolerance. Plant Physiology, 75(2), 364–368.

    Article  CAS  Google Scholar 

  • Segado, P., Domínguez, E., & Heredia, A. (2016). Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiology, 170(2), 935–946.

    Article  CAS  Google Scholar 

  • Shehzad, M. A., Hussain, I., Akhtar, G., Ahmad, K. S., Nawaz, F., Faried, H. N., & Mehmood, A. (2023). Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in Helianthus annuus L. Plant Physiology and Biochemistry, 202, 107935.

    Article  CAS  Google Scholar 

  • Sheth, S. N., & Angert, A. L. (2018). Demographic compensation does not rescue populations at a trailing range edge. Proceedings of the National Academy of Sciences, USA, 115, 2413–2418.

    Article  CAS  Google Scholar 

  • Shi, G., & Cai, Q. (2009). Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environmental and Experimental Botany, 67, 112–117.

    Article  CAS  Google Scholar 

  • Soni, V., & Strasser, R. J. (2008). Survival strategies cannot be devised, they do exist already: A case study on lichens. In Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis (pp. 1567–1571). Springer.

    Chapter  Google Scholar 

  • Soni, V., & Swarnkar, P. L. (2016). Polyphasic chlorophyll fluorescence analysis of photosynthetic adaptation in Commiphora wightii to the harsh natural conditions of arid environment. Romanian Journal of Biophysics, 26, 185–190.

    Google Scholar 

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. (1997). Principles and procedures of statistics. Mc-Graw Hill Book Co., Inc.

    Google Scholar 

  • Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trend in Plant Science, 5, 537–542.

    Article  CAS  Google Scholar 

  • Sun, T., Yuan, H., Cao, H., Yazdani, M., Tadmor, Y., & Li, L. (2018). Carotenoid metabolism in plants: The role of plastids. Molecular Plant, 11(1), 58–74.

    Article  Google Scholar 

  • Topp, C. N. (2016). Hope in change: The role of root plasticity in crop yield stability. Plant Physiology, 172, 5–6.

    Article  CAS  Google Scholar 

  • Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244–252. https://doi.org/10.1016/j.tree.2011.11.014

    Article  Google Scholar 

  • Wadgymar, S. M., Ogilvie, J. E., Inouye, D. W., Weis, A. E., & Anderson, J. T. (2018). Phonological responses to multiple environmental drivers under climate change: Insights from a long-term observational study and a manipulative field experiment. New Phytologist, 218, 517–529.

    Article  Google Scholar 

  • Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–264.

    Article  CAS  Google Scholar 

  • Yang, Z., Li, J. L., Liu, L. N., Xie, Q., & Sui, N. (2020). Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science, 10, 1722.

    Article  Google Scholar 

  • Zokaee-Khosroshahi, M., Esna-Ashari, M., Ershadi, A., & Imani, A. (2014). Morphological changes in response to drought stress in cultivated and wild almond species. International Journal of Horticultural Science and Technology, 1(1), 79–92.

    CAS  Google Scholar 

Download references

Acknowledgements

This manuscript has been derived from MPhil Thesis of the second author.

Author information

Authors and Affiliations

Authors

Contributions

Fahad Ur Rehman: principal student who carried out the experimental work. Ummar Iqbal: principal supervisor of first author, Amina Ameer, Ansar Mehmood, Naila Asghar: biostatistician; data visualization, modeling and interpretation, Muhammad Usama Aslam, Muhammad Faisal Gul and Umar Farooq: research execution, biochemical analysis, anatomical photography, and data collection: Khawaja Shafique Ahmad: led the research team and edited final draft. All authors reviewed the manuscript and approved the changes.

Corresponding author

Correspondence to Khawaja Shafique Ahmad.

Ethics declarations

Ethics approval

The study does not include any animal or human subjects and no specific ethical approval is needed. Other necessary guidelines set by The Islamia University of Bahawalpur, for handling plant material during conduction of laboratory work were followed. After completion of studies, all materials were properly discarded to avoid bio-contamination.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, U., Rehman, F.U., Aslam, M.U. et al. Survival tactics of an endangered species Withania coagulans (Stocks) Dunal to arid environments. Environ Monit Assess 195, 1363 (2023). https://doi.org/10.1007/s10661-023-11982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11982-4

Keywords

Navigation