Skip to main content
Log in

Ecological and human health risk assessment of potentially toxic elements in water and soils within a crude oil waste management facility, Southwestern Ghana

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Crude oil waste management is challenging due to the diverse constituents of the waste and its consequent impact on valued environmental receptors (water and soil). Characterization of the potentially toxic elements (PTEs) in soils and water within the surroundings of crude oil waste management facility is imperative, to aid evaluation of potential risks. The study assessed the potential environmental and human health risks posed by PTEs in soil and water from surroundings and adjoining settlement communities. A total of forty-four (44) samples were analyzed for PTEs (Cr, Pb, Zn, Co, Mn, Ni, Hg, Fe, As, Cu, Hg, and Cd) and physicochemical properties in both matrices. The total carcinogenic risk (TCR) for adults and children in the neighbouring community was 4.73 × 10−6 and 1.2 × 10−4, respectively, which was due to the high carcinogenic slope factor of arsenic. A strong correlation was observed between the PTEs and physicochemical properties, and their health risk was attributed to both geogenic and anthropogenic factors. The study indicated that the human health and ecological risk values obtained were within acceptable limits, with the waste management facility posing a higher risk in comparison to the nearby community. These risks may be attributed to the specific nature and intensity of the activities conducted at the facility. Hence, there is the need for continuous promotion of occupational and public awareness on the health and environmental impact of crude oil waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data used for this research is available on request.

References

  • Abbaspour, A., Zohrabi, F., Dorostkar, V., Faz, A., & Acosta, J. A. (2020). Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae. Journal of Environmental Management, 254(June 2019), 109755. https://doi.org/10.1016/j.jenvman.2019.109755

    Article  CAS  Google Scholar 

  • Aboka, Y. E., Cobbina, S. J., & Doke, A. D. (2018). Review of environmental and health impacts of mining in Ghana. Journal of Health & Pollution, 8(17), 43–52.

    Article  Google Scholar 

  • Acheampong, P. K. (2009). The earth themes and variations. University of Cape Coast.

    Google Scholar 

  • Aghamelu, O. P., Omeka, M. E., & Unigwe, C. O. (2022). Modeling the vulnerability of groundwater to pollution in a fractured shale aquifer in SE Nigeria using information entropy theory, geospatial, and statistical modeling approaches. Modeling Earth Systems and Environment, 9(2), 2385–2406. https://doi.org/10.1007/s40808-022-01640-y

    Article  Google Scholar 

  • Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(17006), 1–12. https://doi.org/10.1038/s41598-021-94616-4

    Article  CAS  Google Scholar 

  • Ahmed, F., Fakhruddin, A. N. M., Imam, M. D. T., Khan, N., & Khan, T. A. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil: A study of Dhaka Aricha highway, Bangladesh. Ecological Processes, 5(2). https://doi.org/10.1186/s13717-016-0045-5

  • Akoto, O., Ephraim, J. H., & Darko, G. (2008). Heavy metals pollution in surface soils in the vicinity of abundant railway servicing workshop in Kumasi, Ghana. International Journal of Environmental Research, 2(4), 359–364.

    Google Scholar 

  • Akoto, O., Bortey-sam, N., Ikenaka, Y., Shouta, M. M., Baidoo, E., Yohannes, B., & Ishizuka, M. (2017). Contamination levels and sources of heavy metals and a metalloid in surface soils in the Kumasi Metropolis, Ghana. Journal of Health and Pollution, 7(15), 28–39.

    Article  Google Scholar 

  • Al-Khawlany, A. H., Khan, A. R., & Pathan, J. M. (2020). Radiological and health hazards resulting from radioactivity and elemental composition of some soil samples. Polish Journal of Medical Physics and Engineering, 26(2), 97–110. https://doi.org/10.2478/pjmpe-2020-0011

    Article  Google Scholar 

  • Amedi, J., Rasheed, R., & Ibrahim, D. (2021). Responce of physico-chemical soil properties to wastewater application and subsequent effects on three woody species plants. the Journal of University of Duhok, 24(2), 106–125. https://doi.org/10.26682/ajuod.2021.24.2.11

    Article  Google Scholar 

  • American Public Health Association (APHA). (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.

    Google Scholar 

  • American Petroleum Institute (API). (2000). Overview of housing census - district analytical report, shamaexploration and production waste volumes and waste management practices in the United States (Issue May) 74.

  • Arada-Pérez, M. d. l. Á., Nápoles-Florián, K. Y., Rodríguez-Acebal, J. M., Yazdani-Pedram, M., & Lazo-Fraga, A. R. (2022). Nitrate determination in natural water samples by potentiometry with ion selective electrode. Revista Cubana de Química, 34(2), 242–262.

    Google Scholar 

  • Asamoah, B. D., Asare, A., Okpati, S. W., & Aidoo, P. (2021). Heavy metal levels and their ecological risks in surface soils at Sunyani magazine in the bono region of Ghana. Scientific African, 13, e00937. https://doi.org/10.1016/j.sciaf.2021.e00937

    Article  CAS  Google Scholar 

  • ATSDR. (2005). Pubic health statement - zinc. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • ATSDR. (2008). Toxicological profile for manganese. U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. https://doi.org/10.1201/9781420061888_ch4

    Book  Google Scholar 

  • Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  • Björnerås, C., Škerlep, M., Floudas, D., Persson, P., & Kritzberg, E. S. (2019). High sulfate concentration enhances iron mobilization from organic soil to water. Biogeochemistry, 144(3), 245–259. https://doi.org/10.1007/s10533-019-00581-6

    Article  CAS  Google Scholar 

  • Blake, G. R. and Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, part 1—physical and mineralogical methods (2nd Ed., pp. 363–382). Madison: Agronomy Monograph 9, American Society of Agronomy—Soil Science Society of America

  • Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (2001). Soil chemistry. (3rd ed.). New York: In John Willey and Sons Inc.

  • Borah, G., & Deka, H. (2023). Crude oil associated heavy metals (HMs) contamination in agricultural land: Understanding risk factors and changes in soil biological properties. Chemosphere, 310(October 2022), 136890. https://doi.org/10.1016/j.chemosphere.2022.136890

    Article  CAS  Google Scholar 

  • Borah, G., Nath, N., & Deka, H. (2021). Effects on anatomy of some abundantly growing herbs in the effluents contaminated soil of oil refinery. Environmental Science and Pollution Research, 28(9), 11549–11557. https://doi.org/10.1007/s11356-020-11407-6

    Article  CAS  Google Scholar 

  • Chapman, H.D., (1965). Cation-exchange capacity. In C. A. Black (ed.), Methods of soil analysis - Chemical and microbiological properties. Agronomy. 9, 891–901.

  • Chinedu, E., & Chukwuemeka, C. K. (2018). Oil spillage and heavy metals toxicity risk in the Niger. Journal of Health & Pollution, 8(19), 1–8.

    Article  Google Scholar 

  • Dewi, T., Martono, E., Hanudin, E., & Harini, R. (2021). Source identification and spatial distribution of heavy metal concentrations in shallot fields in Brebes Regency, Central Java, Indonesia. Applied and Environmental Soil Science, 10, 3197361. https://doi.org/10.1155/2021/3197361

    Article  CAS  Google Scholar 

  • Doyi, I., Essumang, D., Gbeddy, G., Dampare, S., Kumassah, E., & Saka, D. (2018). Ecotoxicology and Environmental Safety Spatial distribution, accumulation and human health risk assessment of heavy metals in soil and groundwater of the Tano Basin, Ghana. Ecotoxicology and Environmental Safety, 165, 540–546. https://doi.org/10.1016/j.ecoenv.2018.09.015

    Article  CAS  Google Scholar 

  • Egorov, V. V., Nazarov, V. A., Okaev, E. B., & Pavlova, T. E. (2006). A new sulfate-selective electrode and its use in analysis. Journal of Analytical Chemistry, 61(4), 382–388. https://doi.org/10.1134/S1061934806040150

    Article  CAS  Google Scholar 

  • El-safa, M. M. A., Gad, M., Eid, E. M., Alnemari, A. M., Almarshadi, M. H., Alshammari, A. S., et al. (2021). Environmental risk assessment of petroleum activities in surface sediments, Suez Gulf, Egypt. Journal of Marine Science and Engineering, 9(473), 1–26.

    Google Scholar 

  • Fourie, M. (2020). What can electrical conductivity tell us about our soil? – Trace and Save. In Woodlands Dairy Sustainability Project-Trace & Save. http://traceandsave.com/what-can-electrical-conductivity-tell-us-about-our-soil/. Acccessed 21st June 2023

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

    Google Scholar 

  • Garcia, M. S. (2011). Management of low radioactive waste - Comparative analysis from the Norwegian oil and gas industry. Molde University College.

    Google Scholar 

  • Ghana Statistical Service (2014). 2010 Population & Housing Census - District Analytical Report, Shama district. www.statsghana.gov.gh. [Accessed 17th August, 2021]

  • Ghorbani, M. R., Ghanavati, N., Babaenejad, T., Nazarpour, A., & Payandeh, K. (2020). Assessment of the potential ecological and human health risks of heavy metals in Ahvaz oil field, Iran. PLoS One, 15(11 November). https://doi.org/10.1371/journal.pone.0242703

  • Gonçalves, D. A. M., da Silveira Pereira, W. V., Johannesson, K. H., Pérez, D. V., Guilherme, L. R. G., & Fernandes, A. R. (2022). Geochemical background for potentially toxic elements in forested soils of the state of Pará, Brazilian Amazon. Minerals, 12(6), 1–12. https://doi.org/10.3390/min12060674

    Article  CAS  Google Scholar 

  • Gong, C., Wang, S., Wang, D., Lu, H., Dong, H., Liu, J., et al. (2022). Ecological and human health risk assessment of heavy metal ( loid ) s in agricultural soil in hotbed chives hometown of Tangchang, Southwest China. Scientific Reports, 12(8563), 1–10. https://doi.org/10.1038/s41598-022-11397-0

    Article  CAS  Google Scholar 

  • Gržetic, I., & Ghariani, R. H. A. (2008). Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia ). Journal of the Serbian Chemical Society, 73(8–9), 923–934. https://doi.org/10.2298/JSC0809923G

    Article  CAS  Google Scholar 

  • Guo, G., Zhang, D., & Wang, Y. (2019). Probabilistic human health risk assessment of heavy metal intake via vegetable consumption around Pb/Zn smelters in Southwest China. Internaltional Journal of Environmental Research and Public Health, 16(3267). https://doi.org/10.3390/ijerph16183267

  • Gyamfi, E., Appiah-adjei, E. K., & Adjei, A. K. (2019). Potential heavy metal pollution of soil and water resources from artisanal mining in Kokoteasua, Ghana. Groundwater for Sustainable Development, 8, 450–456. https://doi.org/10.1016/j.gsd.2019.01.007

    Article  Google Scholar 

  • Hadzi, G. Y., Ayoko, G. A., Essumang, D. K., & Osae, S. (2019). Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41(6), 2821–2843. https://doi.org/10.1007/s10653-019-00332-4

    Article  CAS  Google Scholar 

  • Hadzi, G. Y., Essumang, K. D., & Kwaku, A. J. (2015). Distribution and risk assessment of heavy metals in surface water from pristine environments and major mining areas in Ghana. Journal of Health and Pollution, 5(9).

  • Haraldsson, C., Anderson, L. G., Hassellöv, M., Hulth, S., & Olsson, K. (1997). Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep-Sea Research Part I: Oceanographic Research Papers, 44(12), 2031–2044. https://doi.org/10.1016/S0967-0637(97)00088-5

    Article  CAS  Google Scholar 

  • Hardi, M., Siregar, Y. I., Anita, S., & Ilza, M. (2019). Determination of heavy metals concentration in produced water of oil field exploration in siak regency. Journal of Physics: Conference Series, 1156(1). https://doi.org/10.1088/1742-6596/1156/1/012009

  • Igwe, O., & Omeka, M. E. (2022). Hydrogeochemical and pollution assessment of water resources within a mining area, SE Nigeria, using an integrated approach. International Journal of Energy and Water Resources, 6(2), 161–182. https://doi.org/10.1007/s42108-021-00128-2

    Article  Google Scholar 

  • Jindo, K., Audette, Y., Olivares, F. L., Canellas, L. P., Smith, D. S., & Paul Voroney, R. (2023). Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chemical and Biological Technologies in Agriculture, 10(1), 1–12. https://doi.org/10.1186/s40538-023-00401-y

    Article  CAS  Google Scholar 

  • Kabata-pendias, A. (2011). Trace Elements in Soils and Plants Fourth Edition (Fourth Edi). CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742. pages 93–401

    Google Scholar 

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 13(663), 1–11. https://doi.org/10.3390/ijerph13070663

    Article  CAS  Google Scholar 

  • Kpan, J. D. A., Opoku, B. K., & Gloria, A. (2014). Heavy metal pollution in soil and water in some selected towns in Dunkwa-on-Offin District in the Central Region of Ghana as a result of small scale gold mining. Journal of Agricultural Chemistry and Environment, 3, 40–47.

    Article  Google Scholar 

  • Kpeglo, D. (2015). Radiation exposure to natural radioactivity in crude oil and petroleum waste from oil fields in Ghana; Modelling, risk assessment and regulatory control. PhD thesis. University of Ghana.

    Google Scholar 

  • Kpeglo, D. O., Darko, E. O., Akaho, E. H. K., Adu, P. A. S., Abankwah, E., Faanu, A., et al. (2015). Trace element characterization of crude oil, petroleum products and waste from the Tema Oil Refinery in Ghana using instrumental neutron activation analysis. Elixir Applied Chemistry, 84, 33608–33615.

    Google Scholar 

  • Liao, J., Cui, X., Feng, H., & Yan, S. (2022). Environmental background values and ecological risk assessment of heavy metals in watershed sediments. Water, 14(15). https://doi.org/10.3390/w14010051

  • Ma, J., Wu, S., Shekhar, N. V. R., Biswas, S., & Sahu, A. K. (2020). Determination of physicochemical parameters and levels of heavy metals in food waste water with environmental effects. Bioinorganic Chemistry and Applications, 2020. https://doi.org/10.1155/2020/8886093

  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), 476–494. https://doi.org/10.4067/s0718-95162010000200008

    Article  Google Scholar 

  • Mireku, O. D., Acheampong, P. K., Mariwah, S., Daudu, S., & Atampugre, G. (2014). Institutional arrangements for managing watersheds in Ghana: a study of the Inchaban watershed. International Research Journal of Natural and Applied Science, 1(3), 38–60.

    Google Scholar 

  • MOFA (2020). Ministry of food and agriculture. available at: Internet resources: (www.mofa.gov.gh). [Accessed 16th June 2021] 

  • Monged, M. H. E., Hassan, H. B., & El-Sayed, S. A. (2020). Spatial distribution and ecological risk assessment of natural radionuclides and trace elements in agricultural soil of northeastern Nile Valley, Egypt. Water, Air, and Soil Pollution, 231(7). https://doi.org/10.1007/s11270-020-04678-9

  • Monged, M. H. E., Hussein, M. T., & Khater, A. E. M. (2018). Elemental and radiological aspects of geothermal springs and nearby soil and sediment of Al-Lith area: Concentration and risk assessment. Environmental Earth Sciences, 77(12). https://doi.org/10.1007/s12665-018-7602-4

  • Namieśnik, J., & Rabajczyk, A. (2010). The speciation and physico-chemical forms of metals in surface waters and sediments. Chemical Speciation and Bioavailability, 22(1), 1–24. https://doi.org/10.3184/095422910X12632119406391

    Article  CAS  Google Scholar 

  • Nkansah, M. A., Boadi, N. O., & Badu, M. (2010). Assessment of the quality of water from hand-dug wells in Ghana. Environmental Health Insights, 4, 7–12. https://doi.org/10.4137/EHI.S3149

    Article  CAS  Google Scholar 

  • Nkansah, M. A., Darko, G., Dodd, M., Opoku, F., Essuman, T. B., & Antwi-boasiako, J. (2017). Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana Assessment of pollution levels, potential ecological risk and human heal. Cogent Environmental Science, 3(1), 1412153. https://doi.org/10.1080/23311843.2017.1412153

    Article  CAS  Google Scholar 

  • Nsiah, J. J., & Boakye, E. (2015). Assessment of the quality of water from hand-dug wells in Shama Ahanta West Metropolitan Assembly : Western region of Ghana. International Journal of Science and Technology, 5(9), 1–7.

    Google Scholar 

  • Nwankwoala, H., & Ememu, A. J. (2018). Contamination indices and heavy metal concentrations in soils in Okpoko and Environs, Southeastern Nigeria. Journal of Environmental Science and Public Health, 2(2), 77–95. https://doi.org/10.26502/jesph.96120031

    Article  Google Scholar 

  • Obiri-nyarko, F., Duah, A. A., Karikari, A. Y., Agyekum, W. A., Manu, E., & Tagoe, R. (2021). Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana : Implication for ecological and health risk assessment. Chemosphere, 282(131007). https://doi.org/10.1016/j.chemosphere.2021.131007

  • Obuobie, E., Agyekum, W., Appiah-Adjei, E. K., Upton, K., & Ó Dochartaigh, B.É. Bellwood-Howard, I. (2018). Africa groundwater atlas: hydrogeology of ghana. British Geological Survey. http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Ghana.  [Accessed 8th Dec 2022]

  • Ofori, A. (2015). An assessment of heavy metals content of water, soil and plants in some selected coastal communities near the Jubilee Oil Field in the Western Region of Ghana. University of Ghana.

    Google Scholar 

  • Okedeyi, A. S., Gbadebo, A. M., & Mustapha, A. O. (2014). Effects of physical and chemical properties on natural radionuclides level in soil of quarry sites in Ogun State, Nigeria. Journal of Applied Sciences, 14(7), 691–696. https://doi.org/10.3923/jas.2014.691.696

    Article  CAS  Google Scholar 

  • Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17(7), 1–24. https://doi.org/10.3390/ijerph17072204

    Article  CAS  Google Scholar 

  • Olayinka, O., Akande, O., Bamgbose, K., & Adetunji, M. (2017). Physicochemical characteristics and heavy metal levels in soil samples obtained from selected anthropogenic sites in Abeokuta, Nigeria. Journal of Applied Sciences and Environmental Management, 21(5), 883–891. https://doi.org/10.1177/030642209702600329

    Article  CAS  Google Scholar 

  • Omeka, M. E., & Egbueri, J. C. (2022). Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria. Environmental Geochemistry and Health, 45(5), 2183–2211. https://doi.org/10.1007/s10653-022-01332-7

    Article  CAS  Google Scholar 

  • Omeka, M. E., Egbueri, J. C., & Unigwe, C. O. (2022). Investigating the hydrogeochemistry, corrosivity and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical and statistical modelling. Arabian Journal of Geosciences, 15(13). https://doi.org/10.1007/s12517-022-10514-7

  • Omeka, M. E., Igwe, O., Onwuka, O. S., Nwodo, O. M., Ugar, S. I., Undiandeye, P. A., & Anyanwu, I. E. (2023). Efficacy of GIS-based AHP and data-driven intelligent machine learning algorithms for irrigation water quality prediction in an agricultural-mine district within the Lower Benue Trough, Nigeria. Environmental Science and Pollution Research. Springer Berlin Heidelberg. https://doi.org/10.1007/s11356-023-25291-3

  • Omeka, M. E., Igwe, O., & Unigwe, C. O. (2022). An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria. Environmental Monitoring and Assessment, 194. Springer International Publishing. https://doi.org/10.1007/s10661-022-09856-2

  • Onyemesili, O. O., Egbueri, J. C., & Ezugwu, C. K. (2022). Assessing the pollution status, ecological and health risks of surface waters in Nnewi urban, Nigeria: Implications of poor waste disposal. Environmental Forensics, 23(3–4), 346–360. https://doi.org/10.1080/15275922.2020.1850564

    Article  CAS  Google Scholar 

  • Opeyemi, A., Adewunmi, B., & Oluwaseyi, A. (2020). Physical and chemical properties of Soils in Gambari Forest Reserve near Ibadan, South Western Nigeria. Journal of Bioresource Management, 7(2), 57–67. https://doi.org/10.35691/jbm.0202.0132

    Article  Google Scholar 

  • Pérez-Olmos, R., Yoldi, I., Ruiz, M. P., & Merino, J. M. (1998). Potentiometric determination of nitrite in meat products using a nitrite-selective electrode. Analytical Sciences, 14(5), 1001–1003. https://doi.org/10.2116/analsci.14.1001

    Article  Google Scholar 

  • Plum, L. M., Rink, L., & Hajo, H. (2010). The essential toxin: Impact of zinc on human health. International Journal of Environmental Research and Public Health, 7(4), 1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  Google Scholar 

  • Punitha, S., & Selvarajan, G. (2018). Analysis of heavy metals concentration in ground water from Kilvelur Taluk, Nagapattinam District, Tamil Nadu, India. Journal of Chemistry and Chemical Sciences, 8(3), 538–547. https://doi.org/10.29055/jccs/608

    Article  Google Scholar 

  • Qian, B., Tang, C., Yang, Y., & Xiao, X. (2021). Pollution characteristics and risk assessment of heavy metals in the surface sediments of Dongting Lake water system during normal water period. European Journal of Remote Sensing, 54(S2), 211–221. https://doi.org/10.1080/22797254.2020.1763207

    Article  Google Scholar 

  • Qishlaqi, A., & Moore, F. (2007). Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River Banks, Shiraz, Iran. Journal of Agriculture and Environmental Sciences, 2(5), 565–573.

    Google Scholar 

  • Qu, L., Huang, H., Xia, F., Liu, Y., Dahlgren, R. A., Zhang, M., & Mei, K. (2018). Authors rural-urban interface of the Wen-Rui Tang River, China *. Environmental Pollution, 237, 639–649. https://doi.org/10.1016/j.envpol.2018.02.020

    Article  CAS  Google Scholar 

  • Qureshimatva, U., Maurya, R., Gamit, S., Patel, R., & Solanki, H. (2015). Determination of physico-chemical parameters and water quality index (Wqi) of Chandlodia Lake, Ahmedabad, Gujarat, India. Journal of Environmental & Analytical Toxicology, 05(04). https://doi.org/10.4172/2161-0525.1000288

  • Raj, D., Kumar, A., Tripti, & Maiti, S. K. (2022). Health risk assessment of children exposed to the soil containing potentially toxic elements: A case study from coal mining areas. Metals, 12(11), 1795. https://doi.org/10.3390/met12111795

    Article  CAS  Google Scholar 

  • Relic, D., Sakan, S., Anđelkovic, I., Popovi, A., & Đorđevic, D. (2019). Pollution and health risk assessments of potentially toxic elements in soil and sediment samples in a petrochemical industry and surrounding area. Molecules, 24(2139), 1–19.

    Google Scholar 

  • Sattar, S., Hussain, R., Shah, S. M., Bibi, S., Ahmad, S. R., Shahzad, A., et al. (2022). Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon, 8(10), e11101. https://doi.org/10.1016/j.heliyon.2022.e11101

    Article  CAS  Google Scholar 

  • Siahcheshm, K., Orberger, B., & Wagner, C. (2022). Bioavailability and heavy metals speciation assessment in the contaminated soils of Doustbaglu mineralized area, NW Iran. Environmental Earth Sciences, 81(2), 34. https://doi.org/10.1007/s12665-021-10162-2

    Article  CAS  Google Scholar 

  • Su, C., Meng, J., Zhou, Y., Bi, R., Chen, Z., & Diao, J. (2022). Heavy metals in soils from intense industrial areas in south China: Spatial distribution, source apportionment, and risk assessment. Frontiers in Environmental Science, 10(February), 1–11. https://doi.org/10.3389/fenvs.2022.820536

    Article  Google Scholar 

  • Su, H., Hu, Y., Wang, L., Yu, H., Li, B., & Liu, J. (2022). Source apportionment and geographic distribution of heavy metals and as in soils and vegetables using kriging interpolation and positive matrix factorization analysis. International Journal of Environmental Research and Public Health, 19(1). https://doi.org/10.3390/ijerph19010485

  • Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., et al. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751

    Article  CAS  Google Scholar 

  • Tay, C. K., Dorleku, M., & Doamekpor, L. K. (2019). Human exposure risks assessment of heavy metals in groundwater within the Amansie and Adansi districts in Ghana using pollution evaluation indices. West Africa Journal of Applied Ecology, 27(1), 23–41.

    Google Scholar 

  • Thakare, M., Sarma, H., Datar, S., Roy, A., Pawar, P., Gupta, K., et al. (2021). Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology, 3(February), 84–98. https://doi.org/10.1016/j.crbiot.2021.02.004

    Article  CAS  Google Scholar 

  • Vineethkumar, V., Sayooj, V. V., Shimod, K. P., & Prakash, V. (2020). Estimation of pollution indices and hazard evaluation from trace elements concentration in coastal sediments of Kerala, Southwest Coast of India. Bulletin of the National Research Centre, 44(198). https://doi.org/10.1186/s42269-020-00455-0

  • Wang, Y., Duan, X., & Wang, L. (2019). Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Science of the Total Environment, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953

  • WHO. (2011). Guidelines for drinking-water quality (Vol. 4th ed). World Health Organization.

    Google Scholar 

  • Wu, B., Amelung, W., Xing, Y., Bol, R., & Berns, A. E. (2019). Iron cycling and isotope fractionation in terrestrial ecosystems. Earth-Science Reviews, 190(December 2017), 323–352. https://doi.org/10.1016/j.earscirev.2018.12.012

    Article  CAS  Google Scholar 

  • Yu, G., Chen, F., Zhang, H., & Wang, Z. (2021). Pollution and health risk assessment of heavy metals in soils of Guizhou, China. Ecosystem Health and Sustainability, 7(1), 1859948. https://doi.org/10.1080/20964129.2020.1859948

    Article  Google Scholar 

  • Zhu, H., Bing, H., Yi, H., Wu, Y., & Sun, Z. (2018). Spatial distribution and contamination assessment of heavy metals in surface sediments of the Caofeidian adjacent sea after the land reclamation, Bohai Bay. Jounal of Chemistry, 2049353, 17–19.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Zoil Services Limited, the Ghana Standard Authority (GSA) and the Ghana Atomic Energy Commission (GAEC) for their support in various ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith A. Amoatey.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Author.

Consent for publication

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoatey, E.A., Glover, E.T., Kpeglo, D.O. et al. Ecological and human health risk assessment of potentially toxic elements in water and soils within a crude oil waste management facility, Southwestern Ghana. Environ Monit Assess 195, 1371 (2023). https://doi.org/10.1007/s10661-023-11923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11923-1

Keywords

Navigation