Skip to main content
Log in

Impacts of hydrometeorological factors on discharge simulation in the North West Himalayas: a SUFI-2 algorithm-driven investigation using the SWAT model

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Soil and Water Assessment Tool (SWAT) is a computational hydrological model extensively utilised for developing sustainable strategies and viable approaches for prudent management of water resources. The central emphasis of this study is on the utilisation of SWAT model along with SWAT-CUP (SWAT calibration toolbox) to simulate streamflow in the upper Jhelum basin, the North West Himalayas, for a period of 20 years from 2000 to 2019. The global sensitivity analysis algorithm, Sequential Uncertainty Fitting 2 (SUFI-2) of SWAT-CUP, is used for sensitivity and uncertainty analysis. The optimised parameter set estimated by SUFI-2 constitutes 11 parameters that are found to be sensitive with soil conservation service (SCS) curve number (CN) being the most influential parameter followed by snowmelt base temperature. Autocorrelation analysis using the autocorrelation function was conducted on the temperature and precipitation time series data, followed by a pre-whitening procedure to remove any autocorrelation effects. Subsequently, the modified Mann–Kendall (MMK) test was applied to examine trends in the annual temperature and precipitation data. The results indicated statistically significant positive trends in both datasets on an annual scale. The results for the calibration period (2003–2014) for monthly simulation displayed good model performance at three gauging stations, Rambiara, Sangam and Ram Munshi Bagh with R2 values of 0.83, 0.847, 0.829, P factor values of 0.73, 0.76, 0.75 and R factor values of 0.61, 0.58, 0.63, respectively. The validation results for monthly simulation for the 2015–2019 period showed good model agreement with R2 values of 0.817, 0.853, and 0.836, P factor values of 0.76, 0.8, and 0.75 and R factor values of 0.62, 0.53, and 0.65, respectively. The study concludes that the SWAT hydrological model can perform satisfactorily in high mountainous catchments and can be employed to analyse the impact of land use-land cover changes and the effect of climate variation on streamflow dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

On request.

References

  • Abbas, T., Hussain, F., Nabi, G., Boota, M. W., Wu, R., & S. (2019). Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terrestrial, Atmospheric and Oceanic Sciences, 30(2), 265–279. https://doi.org/10.3319/TAO.2018.10.08.01

    Article  Google Scholar 

  • Abbaspour, K. C. (2011). SWAT-CUP: SWAT calibration and uncertainty programs—a user manual. Swiss Federal Institute of Aquatic Science and Technology.

    Google Scholar 

  • Abbaspour, K. C., Vaghefi, S. A., & Srinivasan, R. (2017). A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water, 10(1), 6.

    Article  Google Scholar 

  • Abbaspour, K.C., Vejdani, M., & Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand 1596–1602. https://doi.org/10.3390/w10010006.

  • Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution largescale SWAT model. Journal of Hydrology, 52(4), 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  • Andrianaki, M., Shrestha, J., Kobierska, F., Nikolaidis, N. P., & Bernasconi, S. M. (2019). Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrology and Earth System Science, 23(8), 3219–3232. https://doi.org/10.5194/hess-23-3219-2019

    Article  Google Scholar 

  • Arnold, J.G., Srinivasan, R., Muttiah, R.S., & Williams, J.R. (1998). Large area hydrologic modelling and assessment. Part I: model development. The Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

  • Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.V., Kannan, N., & Jha, M.K. (2012). SWAT: model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508. https://doi.org/10.13031/2013.42256.

  • Arnold, J. G., & Fohrer, N. (2005). SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 19(3), 563–572. https://doi.org/10.1002/hyp.5611

    Article  Google Scholar 

  • Bai, J., Shen, Z., & Yan, T. (2017). A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China. Frontiers in Earth Science, 11, 592–600. https://doi.org/10.1007/s11707-017-0656-x

    Article  Google Scholar 

  • Bashir, T., & Kumar, R. (2017). Simulation of modelling of water ecohydrologic dynamics in a multilayer root zone under protected conditions in the temperate region of India. Journal of Hydrologic Engineering, 22(10), 05017020.

    Article  Google Scholar 

  • Bashir, T., Romshoo, S. H., & Sabha, I. (2018). Monitoring land use/cover change using remote sensing and GIS techniques in upper Jhelum basin. International Journal of Advance Research in Science and Engineering, 7(4), 1060–1077.

    Google Scholar 

  • Beven, K. (2001). How far can we go in distributed hydrological modelling? Hydrology and Earth System Science, 5(1), 1-12. https://doi.org/10.5194/hess-5-1-2001.

  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. John Wiley & Sons.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (Eds.). (2002). Introduction to time series and forecasting. New York, NY: Springer New York.

  • Choudhary, R., & Athira, P. (2021). Effect of root zone soil moisture on the SWAT model simulation of surface and subsurface hydrological fluxes. Environmental Earth Sciences, 80, 1–16. https://doi.org/10.1007/s12665-021-09912-z

    Article  Google Scholar 

  • Cibin, R., Sudheer, K., & Chaubey, I. (2010). Sensitivity and identifiability of streamflow generation parameters of the SWAT model. Hydrological Processes, 24(9), 1133–1148. https://doi.org/10.1002/hyp.7568

    Article  Google Scholar 

  • Dad, J. M., Muslim, M., Rashid, I., & Reshi, Z. A. (2021). Time series analysis of climate variability and trends in Kashmir Himalaya. Ecological Indicators, 126, 107690. https://doi.org/10.1016/J.ECOLIND.2021.107690

    Article  Google Scholar 

  • Dagnew, A., Philip, T., & Silvia, W. G. (2016). Modelling agricultural watersheds with the soil and water assessment tool (SWAT): calibration and validation with a novel procedure for spatially explicit HRUs. Environmental Management, 57, 894–911. https://doi.org/10.1007/s00267-015-0636-4

    Article  Google Scholar 

  • Debele, B., Srinivasan, R., & Gosain, A. K. (2010). Comparison of process-based and temperature-index snowmelt modeling in SWAT. Water Resources Management, 24, 1065–1088. https://doi.org/10.1007/s11269-009-9486-2

    Article  Google Scholar 

  • Duan, Y., Liu, T., Meng, F., Luo, M., Frankl, A., De Maeyer, P., & Feng, X. (2018). Inclusion of modified snow melting and flood processes in the SWAT model. Water, 10(12), 1715. https://doi.org/10.3390/w10121715

    Article  Google Scholar 

  • El Harraki, W., Ouazar, D., Bouziane, A., El Harraki, I., & Hasnoui, D. (2021). Streamflow prediction upstream of a dam using SWAT and assessment of the impact of land use spatial resolution on model performance. Environmental Processes, 8, 1165–1186. https://doi.org/10.1007/s40710-021-00532-0

    Article  Google Scholar 

  • Fontaine, T. A., Cruickshank, T. S., Arnold, J. S., & Hotchkiss, R. H. (2002). Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology, 262(1–4), 209–223. https://doi.org/10.1016/S0022-1694(02)00029-X

    Article  Google Scholar 

  • Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT model special section: overview and insights. Journal of Environmental Quality, 43(1), 1–8. https://doi.org/10.2134/jeq2013.11.0466

    Article  CAS  Google Scholar 

  • Ghaith, M., & Li, Z. (2020). Propagation of parameter uncertainty in SWAT: A probabilistic forecasting method based on polynomial chaos expansion and machine learning. Journal of Hydrology, 586, 124854.

    Article  Google Scholar 

  • Gull, S., & Shah, S.R. (2022). Modelling streamflow and sediment yield from two small watersheds of Kashmir Himalayas, India. ISH Journal of Hydraulic Engineering, 1–10. https://doi.org/10.1080/09715010.2021.2015463.

  • Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91.

    Article  Google Scholar 

  • Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)

    Article  Google Scholar 

  • Hallouz, F., Meddi, M., Mahé, G., & Alirahmani, S. (2018). Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Science, 32(1), 79–88. https://doi.org/10.1016/j.wsj.2017.12.004

    Article  Google Scholar 

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204, 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Hasan, M. A., & Pradhanang, S. M. (2017). Estimation of flow regime for a spatially varied Himalayan watershed using the improved multisite calibration of the Soil and Water Assessment Tool (SWAT) model. Environmental Earth Sciences, 76, 1–13. https://doi.org/10.1007/s12665-017-7134-3

    Article  Google Scholar 

  • Holvoet, K., Van Griensven, A., Seuntjens, P., & Vanrolleghem, P. (2005). Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C, 30(8–10), 518–526. https://doi.org/10.1016/j.pce.2005.07.006

    Article  Google Scholar 

  • Hosseini, S. H., & Khaleghi, M. R. (2020). Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: the Zoshk-Abardeh watershed). Modeling Earth Systems and Environment, 6(4), 2003–2013. https://doi.org/10.1007/s40808-020-00846-2

    Article  Google Scholar 

  • Iudicello, J. J., & Chin, D. A. (2013). Multimodel, multiple watershed examination of in-stream bacteria modelling. Journal of Environmental Engineering, 139(5), 719–727. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000670

    Article  CAS  Google Scholar 

  • Jost, G., Moore, R. D., Smith, R., & Gluns, D. R. (2012). Distributed temperature-index snowmelt modelling for forested catchments. Journal of Hydrology, 420, 87–101. https://doi.org/10.1016/j.jhydrol.2011.11.045

    Article  Google Scholar 

  • Kang, K., & Lee, J. H. (2014). Hydrologic modelling of the effect of snowmelt and temperature on a mountainous watershed. Journal of Earth System Science, 123, 705–713. https://doi.org/10.1007/s12040-014-0423-2

    Article  CAS  Google Scholar 

  • Kumar, M., Marks, D., Dozier, J., Reba, M., & Winstral, A. (2013). Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models. Advances in Water Resources, 56, 77–89. https://doi.org/10.1016/j.advwatres.2013.03.006

    Article  Google Scholar 

  • Kumar, N., Singh, S. K., Srivastava, P. K., & Narsimlu, B. (2017). SWAT model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm. Modeling Earth Systems and Environment, 3, 1–13. https://doi.org/10.1007/s40808-017-0306-z

    Article  Google Scholar 

  • Malik, M. A., Dar, A. Q., & Jain, M. K. (2021). Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Modeling Earth Systems and Environment, 8(1), 1203–1213. https://doi.org/10.1007/s40808-021-01145-0

    Article  Google Scholar 

  • Mehan, S., Neupane, R.P., & Kumar, S. (2017). Coupling of SUFI 2 and SWAT for improving the simulation of streamflow in an agricultural watershed of South Dakota. Hydrology: Current Research, 8(3). https://doi.org/10.4172/2157-7587.1000280

  • Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies, 25, 100621.

    Google Scholar 

  • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153

  • Nabi, S., Ahanger, M. A., & Dar, A. Q. (2022). Employing sensitivity analysis to catchments having scanty data. Environmental Science and Pollution Research, 29(45), 68118–68131. https://doi.org/10.1007/s11356-022-20514-5

    Article  Google Scholar 

  • Naqash, T. B., Ahanger, M. A., & Maity, R. (2022). Multi-site hydrometeorological simulation of streamflow for upper Jhelum basin in northwest Himalayas using HEC–HMS soil moisture accounting algorithm. Modeling Earth Systems and Environment, 9(1), 431–455. https://doi.org/10.1007/s40808-022-01510-7

  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., & Williams, J.R. (2011). Soil and water assessment tool: theoretical documentation version 2009. Texas Water Resources Institute

  • Neupane, R. P., Yao, J., White, J. D., & Alexander, S. E. (2015). Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation. Journal of Hydrology, 525, 216–230. https://doi.org/10.1016/j.jhydrol.2015.03.048

    Article  Google Scholar 

  • Odusanya, A. E., Mehdi, B., Schürz, C., Oke, A. O., Awokola, O. S., Awomeso, J. A., & Schulz, K. (2019). Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrology and Earth System Sciences, 23(2), 1113–1144. https://doi.org/10.5194/hess-23-1113-2019

    Article  Google Scholar 

  • Raazia, S., & Rasool, S. (2017). Modelling of areal coverage of snow of an ungauged catchment with ArcSWAT. British Journal of Environment and Climate Change, 7(3), 182–194.

    Article  Google Scholar 

  • Rahman, K., Maringanti, C., Beniston, M., Widmer, F., Abbaspour, K., & Lehmann, A. (2013). Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the upper Rhone River watershed case in Switzerland. Water Resource Management, 27, 323–339. https://doi.org/10.1007/s11269-012-0188-9

    Article  Google Scholar 

  • Rashid, I., Romshoo, S. A., Chaturvedi, R. K., Ravindranath, N. H., Sukumar, R., Jayaraman, M., Lakshmi, T. V., & Sharma, J. (2015). Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Climatic Change, 132, 601–613. https://doi.org/10.1007/S10584-015-1456-5/TABLES/3

    Article  Google Scholar 

  • Romshoo, S. A., Rafiq, M., & Rashid, I. (2018). Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya. Journal of Mountain Science, 15(3), 563–576.

    Article  Google Scholar 

  • Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., & Abbaspour, K. C. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal, 53, 977–988. https://doi.org/10.1623/hysj.53.5.977

    Article  Google Scholar 

  • Saltelli, A., Chan, K., & Marian, S. (2000). Sensitivity analysis. Wiley.

    Google Scholar 

  • Santhi, C., Arnold, J. G., Williams, J. R., Hauck, L. M., & Dugas, W. A. (2001). Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASABE, 44(6), 1559. https://doi.org/10.13031/2013.7041

    Article  Google Scholar 

  • Shafiq, M. U., Rasool, R., Ahmed, P., & Dimri, A. P. (2019). Temperature and precipitation trends in Kashmir valley, North Western Himalayas. Theoretical and Applied Climatology, 135(1–2), 293–304. https://doi.org/10.1007/S00704-018-2377-9

    Article  Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (2017). ARIMA models. In: Time series analysis and its applications: Springer Texts in Statistics. Springer, Cham, pp 75–163. https://doi.org/10.1007/978-3-319-52452-8_3

  • Sloboda, M., & Swayne, D. (2011). Autocalibration of environmental process models using a PAC learning hypothesis. In Environmental software systems. Frameworks of environment; IFIP Advances in information and communication technology, vol 359. Springer, Berlin/Heidelberg, pp 528–534. https://doi.org/10.1007/978-3-642-22285-6_57

  • Sudheer, K. P., Chaubey, I., Garg, V., & Migliaccio, K. W. (2007). Impact of time-scale of the calibration objective function on the performance of watershed models. Hydrological Process, 21(25), 3409–3419. https://doi.org/10.1002/hyp.6555

    Article  Google Scholar 

  • Troin, M., & Caya, D. (2014). Evaluating the SWAT’s snow hydrology over a Northern Quebec watershed. Hydrological Process, 28(4), 1858–1873. https://doi.org/10.1002/hyp.9730

    Article  Google Scholar 

  • Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1–4), 10–23. https://doi.org/10.1016/j.jhydrol.2005.09.008

    Article  Google Scholar 

  • Van Griensven, A., Meixner, T., Srinivasan, R., & Grunwald, S. (2008). Fit-for-purpose analysis of uncertainty using split-sampling evaluations. Hydrological Sciences Journal, 53(5), 1090–1103. https://doi.org/10.1623/hysj.53.5.1090

    Article  Google Scholar 

  • Williams, J. R., Arnold, J. G., Kiniry, J. R., Gassman, P. W., & Green, C. H. (2008). History of model development at Temple. Texas. Hydrological Sciences Journal, 53(5), 948–960. https://doi.org/10.1623/hysj.53.5.948

    Article  Google Scholar 

  • Winchell, M., Srinivasan, R., Luzio, D.M., & Arnold, J. (2010). ArcSWAT interface for SWAT 2009. User’s Guide, Texas Agricultural Experiment Station (Texas) and USDA Agricultural Research Service (Texas), Temple (Texas), 102–122

  • Xuan, Y., Cluckie, I., & Wang, Y. (2009). Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilizing short-range rainfall prediction. Hydrology and Earth System Sciences, 13(3), 293–303. https://doi.org/10.5194/hess-13-293-2009

    Article  Google Scholar 

  • Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6), 4–1. https://doi.org/10.1029/2001WR000861

    Article  Google Scholar 

  • Zaz, S. N., Romshoo, S. A., Krishnamoorthy, R. T., & Viswanadhapalli, Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: Implications for remote influence and extreme events. Atmospheric Chemistry and Physics, 19(1), 15–37. https://doi.org/10.5194/ACP-19-15-2019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the help and support rendered by the Department of Ecology, Environment & Remote Sensing, Kashmir, Jammu and Kashmir, and Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir.

Author information

Authors and Affiliations

Authors

Contributions

Taroob Bashir Naqash, Manzoor Ahmad Ahanger and Rajib Maity conceived the idea, Taroob Bashir Naqash collected all data, applied the model and statistics, Taroob Bashir Naqash drafted the manuscript and Manzoor Ahmad Ahanger and Rajib Maity did the proofreading.

Corresponding author

Correspondence to Taroob Bashir Naqash.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqash, T.B., Ahanger, M.A. & Maity, R. Impacts of hydrometeorological factors on discharge simulation in the North West Himalayas: a SUFI-2 algorithm-driven investigation using the SWAT model. Environ Monit Assess 195, 1366 (2023). https://doi.org/10.1007/s10661-023-11916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11916-0

Keywords

Navigation