Skip to main content
Log in

Biomass, carbon stock, CO2 mitigation and carbon credits of coffee-based multitier cropping model in Central India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present work was conducted in the forest-based ecosystem of Chhattisgarh in order to assess the varietal performance of coffee varieties along with silver oak in terms of growth, biomass, and carbon dynamics. Five coffee varieties were planted in silver oak shade in a randomized block design with four replications. The aim of the present investigation is to assess the economic and ecological feasibility of forest-based coffee plantations in the Bastar region of Chhattisgarh. Findings reflect the maximum under-storied plant height in Chandragiri Dwarf (1.85 m) which was at par with CxR (1.82 m) and San Ramon (1.71 m). The maximum above and below-ground carbon stock (48.40 and 12.09 Mg ha−1, respectively), as well as carbon dioxide (CO2) mitigation (177.63 and 44.41 Mg ha−1, respectively) from the under-storied coffee plantation, was recorded in CxR. In the upper-storied plantation, the above and below-ground biomass of silver oak recorded the maximum carbon stock (201.24 and 50.31 Mg ha−1, respectively) and CO2 mitigation (738.54 and 184.63 Mg ha−1) in S-8 intercropped lines. The highest value of carbon credit was recorded under the coffee variety S-8 and silver oak agroecosystem. The S-8, CxR, and Chandragiri Dwarf varieties performed quite well in terms of the expected value of carbon credit.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems and Environment99(1–3), 15–27. https://www.sciencedirect.com/science/article/abs/pii/S0167880903001385?via%3Dihub

  • Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In: P.D. Moore and Chapman (eds.). Method in plant ecology. America: Blackwell Scientific Publications, 285–344.

  • Beer, J., Muschler, R., Kass, D., & Somarriba, E. (1998). Shade management in coffee and cacao plantations. Agroforestry Systems, 38(1–3), 139–164.

    Google Scholar 

  • Bote, A. D., & Struik, P. C. (2011). Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Journal of Horticulture and Forestry, 3(11), 336–341.

    Google Scholar 

  • Campanha, M. M., Santos, R. H., Freitas, G. B., Martinez, H. E., Jaramillo-Botero, C., & Garcia, S. L. (2007). Analise comparativa das ´ caracter´ısticas da serrapilheira e do solo emcafezais (Cofea arabica L.) cultivadosemsistemaagroforestal e emmonocultura, na Zona da Mata MG. Revista Arvore, 31(5), 805–812.https://doi.org/10.1590/S0100-67622007000500004

  • Chidumaya, E. N. (1990). Aboveground woody biomass structure and productivity in Zambezian Woodland. Forest Ecology and Management36, 33–46. https://www.sciencedirect.com/science/article/abs/pii/037811279090062G

  • FRI. (1996). Indian wood their identification, properties and uses, Forest Research Institute, Dehradun. https://www.worldcat.org/title/indian-woods-their-identification-properties-and-uses/oclc/18026600

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2, 45023. https://redd.unfccc.int/uploads/2_112_redd_20081022_tfg.pdf

  • Goswami, S., Verma, K. S., & Kaushal, R. (2014). Biomass and carbon sequestration in different agroforestry systems of a Western Himalayan watershed. Biological Agriculture and Horticulture, 30(2), 88–96. https://doi.org/10.1080/01448765.2013.855990

  • IPCC. (1996). Revised 1996 IPCC guidelines for national greenhouse gas inventories, Greenhouse Gas Inventory reference manual. https://www.ipcc.ch/report/revised-1996-ipcc-guidelines-for-national-greenhouse-gas-inventories/

  • Jemal, O. M., Callo-Concha, D., & van Noordwijk, M. (2021). Coffee agroforestry and the food and nutrition security of small farmers of south-western Ethiopia. Frontiers in Sustain Food Systems, 5, 608868. https://doi.org/10.3389/fsufs.2021.608868

  • Jena, B. K., Biswas, S., Majumder, M., Roy, P. K, & Mazumdar, A. (2009). Carbon sequestration rate and aboveground biomass carbon potential of four young species. Journal of Ecology and The Natural Environment1(2), 15–24. https://pubmed.ncbi.nlm.nih.gov/23029931/

  • Jhariya, M. K., Meena, R. S., Banerjee, A., & Meena, S. N. (2022). Natural resources conservation and advances for sustainability. Elsevier, Academic Press. ISBN: 9780128229767. https://doi.org/10.1016/C2019-0-03763-6

  • Kanime, N., Kaushal, R., Tiwari, S. K., Raverkar, K. P., Chaturvedi, S., & Chaturvedi, O. P. (2013). Biomass production and carbon sequestration in different tree based systems of central Himalayan Tarai region. Forests Trees Livelihoods, 22(1), 38–50. https://doi.org/10.1080/14728028.2013.764073

  • Khan, N., Jhariya, M. K., Yadav, D. K., & Banerjee, A. (2020a). Herbaceous dynamics and CO2 mitigation in an urban setup- A case study from Chhattisgarh. India. Environ Sci Pollution Res, 27(3), 2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan, N., Jhariya, M. K., Yadav, D. K., & Banerjee, A. (2020b). Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh. India. Environ Sci Pollution Res, 27(5), 5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Khan, N., Jhariya, M. K., Raj, A., Banerjee, A., & Meena, R. S. (2021). Eco-designing for sustainability. In: Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore. Pp. 565–595. https://doi.org/10.1007/978-981-33-4203-3_16

  • Kumar, S., Verma, K. S., & Kumar, N. (2012). Aboveground carbon sequestration potential of agroforestry systems of Western Himalaya. Journal of Tree Science, 3(1&2), 20–28.

    CAS  Google Scholar 

  • Kurniawan, S., Hariyanto, P., & Ishaq, R. M. (2021). Soil management practices in coffee-based agroforestry systems within Universitas Brawijaya Forest impact on maintaining soil carbon stock. IOP Conf. Series: Earth and Environmental Science, 824, 012010. https://doi.org/10.1088/1755-1315/824/1/012010

  • Meena, R. S., Yadav, A., Kumar, S., Jhariya, M. K., & Jatav, S. S. (2022). Agriculture ecosystem models for CO2 sequestration, improving soil physicochemical properties, and restoring degraded land. Ecological Engineering176, 106546. https://doi.org/10.1016/j.ecoleng.2022.106546

  • Negawo, W. J., & Beyene, D. N. (2017). The role of coffee based agroforestry system in tree diversity conservation in eastern Uganda. Journal of Landscape Ecology10(2).  https://doi.org/10.1515/jlecol-2017-0001

  • Pressler, M. (1865). Das Gesetz der Stambildung Leipzig, 153.

  • Raj, A., Jhariya, M. K., Banerjee, A., Meena, R. S., Nema, S., Khan, N., Yadav, S. K., & Pradhan, G. (2022). Agroforestry for ecological sustainability. In: Natural Resources Conservation and Advances for Sustainability, 289–307, Elsevier. https://doi.org/10.1016/B978-0-12-822976-7.00002-8

  • Rajput, B. S. (2010). Bio-economic appraisal and carbon sequestration potential of different land use systems in temperate northwestern Himalayas. Ph.D. Thesis, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India. https://www.semanticscholar.org/paper/BIO-ECONOMIC-APPRAISAL-AND-CARBON-SEQUESTRATION-OFRajput/d6a03d7326c91da3c6583d4b12ab713be8c1d73e

  • Ricci, M. S. F., Cocheto Junior, D. G., & Almeida, F. F. D. (2013). Condicoes microclimaticas, fenologiaemorfologiaexternadecafeeirosemsistemasarborizadoseapleno sol. Coffee Science, 8(3), 379–388.

    Google Scholar 

  • Roy, O., Meena, R. S., Kumar, S., Jhariya, M. K., & Pradhan, G. (2022). Assessment of land use systems for CO2 sequestration, carbon credit potential and income security in Vindhyan region. India. Land Degradation & Development, 33(4), 670–682. https://doi.org/10.1002/ldr.4181

    Article  Google Scholar 

  • Singh, K. P., Singh, B., Rahangdale, C. P., & Thakur, D. S. (2021). Coffee cultivation in agroforestry system in the non-traditional Bastar zone of Chhattisgarh. Agricultural Mechanization in Asia, 52(2), 1–8.

    CAS  Google Scholar 

  • Singh, K. P., Singh, B., Kerketta, A., Kumar, B., & Sahu, S. (2020). Coffee in Chhattisgarh. College of Horticulture and Research Station, Jagdalpur. IGKV/Pub./2020T.b1./03. Pp. 1–24. https://igkv.ac.in/_Attachment/web/Research/Publication/2020/Publication_3_20210726045603487.pdf

  • Thakrey, M., Singh, L., Jhariya, M. K., Tomar, A., Singh, A. K., & Toppo, S. (2022). Impact of disturbance on biomass, carbon, nitrogen storage in vegetation and soil properties in tropical dry deciduous forest in Chhattisgarh, India. Land Degradation & Development, 33, 1810–1820. https://doi.org/10.1002/ldr.4263

    Article  Google Scholar 

  • Yadava, A. K. (2011). Potential of agroforestry systems in carbon sequestration for mitigating climate changes in Tarai region of central Himalaya. Nature and Science, 9, 72–80.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the district administration of Bastar, College of Horticulture and Research Station, Jagdalpur, IGKV, Raipur (C.G.), India for granting permission and necessary support.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Krishan Pal Singh: Conceptualization, design, data collection, formal analysis and methodology, and validation. Beena Singh: Conceptualization, design, data collection, formal analysis and methodology, and validation. Sanjay Kumar Patil: Funding acquisition, review. Chhatra Pal Rahangdale: Formal analysis, methodology. Arnab Banerjee: Statistical analysis, writing. Rajshree Shukla: Formal analysis, drafting. Khemraj Sahu: Formal analysis, drafting. Manoj Kumar Jhariya: drafting MS, methodology, review & editing. All authors discussed, contributed, and approved the final version.

Corresponding author

Correspondence to Manoj Kumar Jhariya.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

All the authors approved the manuscript for publication.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Assessing five coffee varieties under a silver oak-based multitier cropping model.

• CxR recorded the maximum understory biomass, carbon, and CO2 mitigation.

• Silver oak reflects higher biomass, carbon, and CO2 mitigation intercropped with S-8.

• Coffee-based multitier cropping helps towards maximum utilization of resources.

• Higher C credit was recorded for S-8 and silver oak agroecosystem (₹ 60,560.59 ha−1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.P., Singh, B., Patil, S.K. et al. Biomass, carbon stock, CO2 mitigation and carbon credits of coffee-based multitier cropping model in Central India. Environ Monit Assess 195, 1250 (2023). https://doi.org/10.1007/s10661-023-11892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11892-5

Keywords

Navigation