Skip to main content

Advertisement

Log in

Radioactive remote signatures derived from Sentinel-2 images and field verification in West Sulawesi, Indonesia

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mamuju, West Sulawesi, is an area in Indonesia with high radiation levels. A high radiation dose rate was detected in Adang volcanic rock. Activities related to radioactive minerals contained in rocks and soil may release hazardous radiation into the environment. The study area generally exhibits a highly irregular morphology that provides limited access because of the high slope gradient of the volcanic terrain. Therefore, it is challenging to identify and map minerals carrying radioactive elements via Sentinel-2 remote sensing. Since optical satellite images are superior in land cover detection, we proposed a mapping technique for radioactive carrier minerals based on vegetation indices verified by chlorophyll field measurements. We applied band rationing to identify the distribution of hydrothermal alteration minerals and vegetation stress, while field chlorophyll measurements of Dryopteris marginalis and Nephrolepis exaltata were conducted. The Sentinel-2 color composite of images with 4/2, 8A/11, and 11/12 RGB band ratios revealed the distribution of iron oxide, ferromagnesian silicates, and clay minerals. High levels of uranium (U) were scattered in leucite basalt rocks, with a broad distribution of iron oxide minerals and small amounts of ferromagnesian minerals. In contrast, the presence of thorium was not affected by the presence of these minerals. In addition, band rationing of chlorophyll spectra captured by the red edge vegetation index (REVI) was used as the basis for vegetation stress mapping related to radiation exposure based on the chlorophyll content in ferns in the study area. The REVI image showed an anomalous vegetation stress concordant with the high radioactivity. To obtain more accurate results, ground measurements were also performed to identify the vegetation stress due to the presence of minerals carrying radioactive elements. The areas with radioactive mineralization and vegetation stress were located upstream of the Mamuju River and the Botteng and Ahu areas in Tapalang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The field chlorophyll data were provided in this submission as a separate file.

References

  • Ahmed, N. K., Abbady, A., El Arabi, A. M., Michel, R., El Kamel, A. H., & Abbady, A. G. E. (2006). Comparative study of the natural radioactivity of some selected rocks from Egypt and Germany. Indian Journal of Pure and Applied Physics, 44, 209–215.

    CAS  Google Scholar 

  • Davids, C., & Tyler, A. N. (2003). Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sensing of Environment, 85, 30–38.

    Article  Google Scholar 

  • Dulanlebit., Y. H., Unwakoly, S., and Sangadji, R. P. (2021). Studi potensi Pteris vitata, Amaranthus spinosus, Ipomoea reptansoir sebagai fitoremediator tanah tercemar merkuri (Hg). Molluca Journal of Chemistry Education, 11, 32–38.

    Google Scholar 

  • Evans, R. D., & Goodman, C. (1941). Radioactivity of rocks. Bulletin of the Geological Society of America, 52(4), 459–490.

    Article  CAS  Google Scholar 

  • Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112, 492–501.

    Article  CAS  Google Scholar 

  • Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., & Filella, I. (2011). The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sensing of Environment, 115(2), 281–297.

    Article  Google Scholar 

  • Hazen, R. M., Ewing, R. C., & Svarjensky, D. A. (2009). Evolution of uranium and thorium minerals. American Mineralogist, 94, 1293–1311.

    Article  CAS  Google Scholar 

  • Hede, A. N. H., Koike, K., Kashiwaya, K., Sakurai, S., Yamadha, R., & Singer, D. A. (2017). How can satellite imagery be used for mineral exploration in thick vegetation areas? Geochemistry, Geophysics, Geosystems, 18(2), 584–596.

    Article  Google Scholar 

  • Indrastomo, F. D. (2015). Prospeksi mineral radioaktif menggunakan Landsat-8 dan radiometri batuan/soil di daerah Mamuju, Sulawesi Barat, Master’s Thesis, Institut Teknologi Bandung, 133 pages.

  • Indrastomo, F. D., Sukadana, I. G., & Saepuloh, A. (2015). Interpretasi vulkanostratigrafi daerah Mamuju berdasarkan analisis citra Landsat-8. Eksplorium, 36, 71–88.

    Article  Google Scholar 

  • Iskandar, D., Syarbaini, & Kusdiana. (2014). Map of environmental gamma dose rate of Indonesian, National Nuclear Energy Agency of Indonesia, Indonesia.

  • Jabbar, A., Tufail, M., Arshed, W., Bhatti, A. S., Ahmad, S. S., Akhter, P., & Dilband, M. (2010). Transfer of radioactivity from soil to vegetation in Rechna Doab. Pakistan, Isotopes in Environmental and Health Studies, 46(4), 495–505.

    Article  CAS  Google Scholar 

  • Küçükönder, E., Gümbür, S., Söğüt, O., & Doğru, M. (2023). Radioactivity amounts, annual effective dose rate, and lifetime cancer risk estimation of some vegetable and fruit samples cultivated in Kahramanmaraş. Turkey, Environmental Monitoring and Assessment, 195(475), 1–12.

    Google Scholar 

  • Larsen, E. S., & Phair, G. (1954). Nuclear geology, a symposium on nuclear phenomena in the Earth sciences, John Wiley & Sons Inc, New York (pp. 75–89). Chapman & Hall Ltd.

    Google Scholar 

  • Lee, J. H., & Yi, S. C. (2023). Assessment of radiological impact on the surrounding environment and biota for phosphogypsum waste stockyard in Korean facility. Environmental Monitoring and Assessment, 195(767), 1–13.

    Google Scholar 

  • Matiullah, M., Ahad, A., Faheem, M., Nasir, T., & Rahman, S. (2008). Measurement of radioactivity in vegetation of the Bahawalpur division and Islamabad federal capital territory—Pakistan. Radiation Measurements, 43(1), S532–S536.

    Article  CAS  Google Scholar 

  • Mori, M., Yoneda, M., Shimada, Y., Fukutani, S., Ikegami, M., & Shimomura, R. (2018). Analysis on the influence of forest soil characteristics on radioactive Cs infiltration and evaluation of residual radioactive Cs on surfaces. Environmental Monitoring and Assessment, 190(256), 1–23.

    CAS  Google Scholar 

  • Mostafa, Y. A. M., Kadhim, N. F., Ammer, H., & Baqir, Y. (2021). The plant transfer factor of natural radionuclides and the soil radiation hazard of some crops. Environmental Monitoring and Assessment, 193(320), 1–11.

    Google Scholar 

  • Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387.

    Article  Google Scholar 

  • Ondieki, J. O., Mito, C. O., & Kaniu, M. I. (2022). Feasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques. International Journal of Applied Earth Observation and Geoinformation, 107(102700), 1–10.

    Google Scholar 

  • Peterson, T. A., Blackmer, T. M., Francis, D. D., & Schepers, J. S. (1993). G93–1171 Using a chlorophyll meter to improve N management, Historical Materials from University of Nebraska, Extension no.1353, Lincoln, USA. https://digitalcommons.unl.edu/extensionhist/1353. Downloaded on June 20, 2021.

  • Ratman, N., & Atmawinata, S. (1993). Geological map of Mamuju quadrangle, Sulawesi 1:250,000, Geological Research and Development Center of Indonesia, Indonesia.

  • Rosianna, I., Nugraha, E. D., Syaeful, H., Putra, S., Hosoda, M., Akata, N., & Tokonami, S. (2020). Natural radioactivity of laterite and volcanic rock sample for radioactive mineral exploration in Mamuju. Indonesia, Geosciences, 10(9), 1–13.

    Google Scholar 

  • Ruffing, A. M., Anthony, S. M., Strickland, L. M., Lukbin, I., & Dietz, C. R. (2021). Identification of metal stresses in Arabidopsis thaliana using hyperspectral reflectance imaging. Frontiers in Plant Science, 12, 1–13.

    Article  Google Scholar 

  • Sabins, F. F., Jr. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4), 157–183.

    Article  Google Scholar 

  • Saepuloh, A., Koike, K., & Omura, M. (2012). Applying Bayesian decision classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano. IEEE Geoscience and Remote Sensing Letters, 99(4), 554–558.

    Article  Google Scholar 

  • Sharma, P., Kaur, J., & Katnoria, J. K. (2023). Assessment of spatial variations in pollution load of agricultural soil samples of Ludhiana district. Punjab, Environmental Monitoring and Assessment, 195(222), 1–18.

    Google Scholar 

  • Siraz, M. M. M., Das, S. K., Mondol, M. S., Alam, M. S., Mahmud, J. A., Rashid, Md. B., Khandaker, M. U., & Yeasmin, S. (2023). Evaluation of transfer factors of 226Ra, 232Th, and 40K radionuclides from soil to grass and mango in the northern region of Bangladesh. Environmental Monitoring and Assessment, 195(579), 1–16.

    Google Scholar 

  • Sukadana, I. G., Harijoko, A., & Setijadji, L. D. (2015). Analisis Tatanan Tektonik Batuan Gunung Api di Komplek Adang, di Kabupaten Mamuju. Sulawesi Barat Berdasarkan Data Geokimia, Eksplorium, 36, 31–44.

    Google Scholar 

  • Sukadana, I. G., Warmada, I. W., Harijoko, A., Indrastomo, F. D., & Syaeful, H. (2021). The application of geostatistical analysis on radiometric mapping data to recognize the uranium and thorium anomaly in West Sulawesi. Indonesia, IOP Conference Series: Earth and Environmental Science, 819, 1–12.

    Google Scholar 

  • Syaeful, H., Sukadana, I. G., & Sumaryanto, A. (2014). Radiometric mapping for naturally occurring radioactive materials (NORM) assessment in Mamuju. West Sulawesi, Atom Indonesia, 40, 33–39.

    Google Scholar 

  • Syaifudin, M. (2017). Mamuju as Prospective area for epidemiology study effect of high natural radiation. Buletin Alara, 19(1), 17–25.

    Google Scholar 

  • Thenot, F., Méthy, M., & Winkel, T. (2010). The photochemical reflectance index (PRI) as a water-stress index. International Journal of Remote Sensing, 23(23), 5135–5139.

    Article  Google Scholar 

  • Turner, F. T., & Jund, M. F. (1994). Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Australian Journal of Experimental Agriculture, 34, 1001–1005.

    Article  Google Scholar 

  • Zlatić, N. M., Krstić, D. Ž, & Stanković, M. S. (2021). Radioactivity level in relation to geological substrate: Dynamics of natural and artificial radionuclides on Teucrium montanum L. (Lamiaceae) habitats. Environmental Monitoring and Assessment, 193(749), 1–10.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Nuclear Agency of Indonesia for providing the data and sharing knowledge.

Funding

This research was partly funded by LPPM ITB under a competitive scheme with code FITB.PN-6–09-2021 and FITB ITB under P2MI 2021 research programs with code FITB.PN-1–09-2021.

Author information

Authors and Affiliations

Authors

Contributions

Asep Saepuloh contributed to paper preparation, satellite image processing, data analysis, and field data verification. Ibnu Rizky Ratnanta contributed to the field measurements, including geological observations and chlorophyll measurements. Arie Naftali Hawu Hede contributed to satellite image analysis and paper content verification. Very Susanto contributed to the field chlorophyll measurements and grammar correction. I Gusti Bagus Eddy Sucipta contributed to the geological field observations and geological content improvement in the paper.

Corresponding author

Correspondence to Asep Saepuloh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saepuloh, A., Ratnanta, I.R., Hede, A.N.H. et al. Radioactive remote signatures derived from Sentinel-2 images and field verification in West Sulawesi, Indonesia. Environ Monit Assess 195, 1243 (2023). https://doi.org/10.1007/s10661-023-11868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11868-5

Keywords

Navigation