Skip to main content
Log in

Enhancement of photocatalytic activity of Ba-doped CoO for degradation of Emamectin benzoate in aqueous solution

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study was focused on the preparation of cobalt oxide (CoO) and barium-doped cobalt oxide (Ba-doped CoO) by following the co-precipitation method for the degradation of Emamectin benzoate pesticide in the aqueous medium. The prepared catalysts were characterized using SEM, EDX, and XRD to confirm the formation of catalysts and to observe the variation in the composition of catalysts during the degradation study. It can be suggested from the results of SEM, EDX, XRD, and FTIR analyses that Ba atom has successfully incorporated in the crystalline structure of CoO. The degradation of Emamectin benzoate pesticide was studied under the influence of different factors like solution pH, the dose of catalyst, contact time, temperature, and initial concentration of pesticide. It was observed that solution pH affects the degradation of the pesticide, and maximum degradation (23% and 54%) was found at pH 5.0 and 6.0 using CoO and Ba-doped CoO, respectively. The degradation of pesticides was found to be increased continuously (27–35% in case of CoO while 47–58% in case Ba-doped CoO) with the time of contact. However, the degradation was found to be decreased (23–3% in case of CoO while 47–44% in case Ba-doped CoO) with an increase in temperature. Likewise, in the beginning, degradation was observed to be increased up to some extent with the dose of catalyst and initial concentration of pesticide but started to decrease with further augmentation in the dose of catalyst and initial concentration of pesticide. It may be concluded from this study that doping of Ba considerably enhanced the photocatalytic ability of CoO for Emamectin benzoate pesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data used to support the outcomes of this study are included in the article.

References

  • Ahmad, I., Shukrullah, S., Naz, M. Y., Ahmed, E., Ahmad, M., Rehman, S. U., Bhatti, H. N., & Ghaffar, A. (2021). The role of synthesis method in hydrogen evolution activity of Ce doped ZnO/CNTs photocatalysts: A comparative study. International Journal of Hydrogen Energy, 46(59), 30320–30333. https://doi.org/10.1016/j.ijhydene.2021.06.148

    Article  CAS  Google Scholar 

  • Ahmad, I., Ahmed, E., & Ahmad, M. (2019). The excellent photocatalytic performances of silver doped ZnO nanoparticles for hydrogen evolution. SN Applied Sciences, 1, 1–12. https://doi.org/10.1007/s42452-019-0331-9

    Article  CAS  Google Scholar 

  • Ahmed, A., Usman, M., Yu, B., Ding, X., Peng, Q., Shen, Y., & Cong, H. (2020). Efficient photocatalytic degradation of toxic Alizarin Yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. Journal of Photochemistry and Photobiology B: Biology, 202, 111682. https://doi.org/10.1016/j.jphotobiol.2019.111682

  • Alkaykh, S., Mbarek, A., & Ali-Shattle, E. E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4), e03663. https://doi.org/10.1016/j.heliyon.2020.e03663

  • Al-Musawi, T. J., Arghavan, S. M. A., Allahyari, E., Arghavan, F. S., Othmani, A., & Nasseh, N. (2022a). Adsorption of malachite green dye onto almond peel waste: A study focusing on application of the ANN approach for optimization of the effect of environmental parameters. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02174-6

    Article  Google Scholar 

  • Al-Musawi, T. J., Moghaddam, N. S. M., Rahimi, S. M., Amarzadeh, M., & Nasseh, N. (2022b). Efficient photocatalytic degradation of metronidazole in wastewater under simulated sunlight using surfactant- and CuS-activated zeolite nanoparticles. Journal of Environmental Management, 319, 115697. https://doi.org/10.1016/j.jenvman.2022.115697

  • Al-Musawi, T. J., Moghaddam, N. S. M., Rahimi, S. M., Hajjizadeh M., & Nasseh, N. (2022c). Hexadecyltrimethylammonium-activated and zinc oxide-coated nano-bentonite: A promising photocatalyst for tetracycline degradation. Sustainable Energy Technologies and Assessments Part A, 53, 102451. https://doi.org/10.1016/j.seta.2022.102451

  • Amarzadeh, M., Salehizadeh, S., Damavandi, S., Mubarak, N. M., Ghahrchi, M., Ramavandi, B., Shahamat, Y. D., & Nasseh, N. (2022). Statistical modeling optimization for antibiotics decomposition by ultrasound/electro-Fenton integrated process: Non-carcinogenic risk assessment of drinking water. Journal of Environmental Management, 324, 116333. https://doi.org/10.1016/j.jenvman.2022.116333

  • Armstrong, R., MacPhee, D., Katz, T., & Endris, R. (2000). A field efficacy evaluation of emamectin benzoate for the control of sea lice on Atlantic salmon. The Canadian Veterinary Journal, 41(8), 607–612. PMID: 10945125; PMCID: PMC1476239.

  • Atul, Kumar, M., Sharma, A., Maurya, I. K., Thakur, A., & Kumar, S. (2019). Synthesis of ultra-small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science, 13(1), 280-285. https://doi.org/10.1080/16583655.2019.1565437

  • Bagade, A.V., Pund, S. N., Nagwade, P. A., Kumar, B., Deshmukh, S. U., & Kanagare, A. B. (2023). Ni-doped Mg-Zn nano-ferrites: Fabrication, characterization, and visible-light-driven photocatalytic degradation of model textile dyes. Catalysis Communications, 181, 106719. https://doi.org/10.1016/j.catcom.2023.106719

  • Bahrudin, N. N. (2022). Evaluation of degradation kinetic and photostability of immobilized TiO2/ activated carbon bilayer photocatalyst for phenol removal. Applied Surface Science Advances, 7, 100208. https://doi.org/10.1016/j.apsadv.2021.100208

  • Bano, F., & Mohanty, B. (2020). Thyroxine modulation of immune toxicity induced by mixture pesticides mancozeb and fipronil in mice. Life Sciences240, 117078. https://doi.org/10.1016/j.lfs.2019.117078

  • Bao, L., He, Y., Peng, C., Li, Y., Ou, E., & Xu, W. (2019). A new member of the CoO structure family: Hexagonal prisms CoO assembled on reduced graphene oxide for high-performance lithium-ion storage capacity. Materials LettErs, 235, 88–91. https://doi.org/10.1016/j.matlet.2018.10.004

    Article  CAS  Google Scholar 

  • Bruno, C. B. S., & Antoninho, V. (2019). Evaluation of the photocatalytic activity of SiO2@TiO2 hybrid spheres in the degradation of methylene blue and hydroxylation of benezene: Kinetic and Mechanistic Study. Brazilian Journal of Chemical Engineering, 36(4), 1501–1518. https://doi.org/10.1590/0104-6632.20190364s20190139

    Article  CAS  Google Scholar 

  • Buerge, I. J., Bächli, A., Kasteel, R., Portmann, R., López-Cabeza, R., Schwab, L. F., & Poiger, T. (2019). Behavior of the chiral herbicide imazamox in soils: PH-dependent, enantioselective degradation, formation and degradation of several chiral metabolites. Environmental Science & Technology, 53(10), 5725–5732. https://doi.org/10.1021/acs.est.8b07209

    Article  CAS  Google Scholar 

  • Calatayud-Vernich, P., Calatayud, F., Simó, E., Suarez-Varela, M. M., & Picó, Y. (2016). Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Science of the Total EnvironMent, 541, 33–41. https://doi.org/10.1016/j.scitotenv.2015.08.131

    Article  CAS  Google Scholar 

  • Chuanxi, Y., Wenping, D., Guanwei, C., Yingqiang, Z., Xifeng, S., Xinyuan, X., Bo, T., & Weiliang, W. (2017). Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Scientific Reports, 7, 3973. https://doi.org/10.1038/s41598-017-04398-x

    Article  CAS  Google Scholar 

  • Cook, D. R., Leonard, B. R., & Gore, J. (2004). Field and laboratory performance of novel insecticides against armyworms (Lepidoptera: Noctuidae). Florida Entomologist, 87(4), 433–439. https://doi.org/10.1653/0015-4040(2004)087[0433:FALPON]2.0.CO;2

    Article  CAS  Google Scholar 

  • De Gavelle, E., De Lauzon-Guillain, B., Charles, M. A., Chevrier, C., Hulin, M., Sirot, V., Merlo, M., & Nougadère, A. (2016). Chronic dietary exposure to pesticide residues and associated risk in the French ELFE cohort of pregnant women. Environment International, 92–93, 533–542. https://doi.org/10.1016/j.envint.2016.04.007

    Article  CAS  Google Scholar 

  • Dhivya, A., Rakhi, Y., & Stella, P. C. (2022). An Eco-approach synthesis of undoped and Mn doped ZnO nanophotocatalyst for prompt decoloration of methylene blue dye. Materials Today: Proceeding, 48, 494–501. https://doi.org/10.1016/j.matpr.2021.02.751

  • Duan, Y., Xiao, X., Li, T., Chen, W., Wang, J., Fraaije, B. A., & Zhou, M. (2018). Impact of epoxiconazole on Fusarium head blight control, grain yield and deoxynivalenol accumulation in wheat. Pesticide Biochemistry Physiology, 152, 138–147. https://doi.org/10.1016/j.pestbp.2018.09.012

    Article  CAS  Google Scholar 

  • Fanigliulo, A., & Sacchetti, M. (2008). Emamectin benzoate: New insecticide against Helicoverpa armigera. Communications in Agricultural and Applied Biological Sciences, 73(3), 651–653. PMID: 19226807.

    CAS  Google Scholar 

  • Fevery, D., Houbraken, M., & Spanoghe, P. (2016). Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Science of the Total Environment, 550, 514–521. https://doi.org/10.1016/j.scitotenv.2016.01.123

    Article  CAS  Google Scholar 

  • González-Curbelo, M. A., Socas-Rodríguez, B., Herrero, M., Herrera-Herrera, A. V., & Hernández-Borges, J. (2017). Dissipation kinetics of organophosphorus pesticides in milled toasted maize and wheat flour (gofio) during storage. Food Chemistry, 229, 854–859. https://doi.org/10.1016/j.foodchem.2017.02.148

    Article  CAS  Google Scholar 

  • Grosman, D. M., Clarke, S. R., & Upton, W. W. (2009). Efficacy of two systemic insecticides injected into loblolly pine for protection against southern pine bark beetles (Coleoptera: Curculionidae). Journal of Economic Entomology, 102(3), 1062–1069. https://doi.org/10.1603/029.102.0326

    Article  CAS  Google Scholar 

  • Iqbal, S., Bahadur, A., Javed, M., Hakami, O., Irfan, R. M., Ahmad, Z., AlObaid, A., Al-Anazy, M. M, Baghdadi, H. B., Abd-Rabboh, H. S. M., Al-Muhimeed, T. I., Liua, G., & Nawaz M. (2021). Design Ag-doped ZnO heterostructure photocatalyst with sulfurized graphitic C3N4 showing enhanced photocatalytic activity. Materials Science and Engineering: B, 272, 115320. https://doi.org/10.1016/j.mseb.2021.115320

  • Liu, Z., Zhang, Y., Kong, L., Liu, L., Luo, J., Liu, B., Zhou, Q., He, F., Xu, D., & Wu, Z. (2019). Preparation and preferential photocatalytic degradation of acephate by using the composite photocatalyst Sr/TiO2-PCFM. Chemical Engineering Journal, 374, 852–862. https://doi.org/10.1016/j.cej.2019.06.013

    Article  CAS  Google Scholar 

  • Malik, R., Chaudhary, V., Tomer, V. K., Rana, P., Nehra, S. S. P., & Duhan, S. (2016). Visible light-driven mesoporous auTiO2/SiO2 photocatalysts for advanced oxidation process. Ceramics International, 42(9), 10892–10901. https://doi.org/10.1016/j.ceramint.2016.03.222

    Article  CAS  Google Scholar 

  • Mandal, R. K., Saha, P., & Majumder, T. P. (2021). Structural, optical characterization of the synthesized Fe doped CdO Nano particles, its application as a promising photocatalyst for degradation of the hazardous Methyl violet dye. Optik, 246, 167795. https://doi.org/10.1016/j.ijleo.2021.167795

  • Mayoufi, A., Nsib, M. F., & Houas, A. (2014). Doping level effect on visible-light irradiation W-doped TiO2–Anatase photocatalysts for Congo red photodegradation. Compte Rendus ChimIe, 17(7–8), 818–823. https://doi.org/10.1016/j.crci.2014.01.019

    Article  CAS  Google Scholar 

  • Moghaddam, N. S. M., Barikbin, B., Al-Essac E. M., Khosravid R., Al-Musawie, T., & Nasseh, N. (2022). Application of magnetic activated carbon coated with CuS nanoparticles as a new adsorbent for the removal of tetracycline antibiotic from aqueous solutions (isotherm, kinetic and thermodynamic study), Desalination and Water Treatment, 280, 297–311. https://doi.org/10.5004/dwt.2022.29079

  • Nair, M. G., Nirmala, M., Rekha, K., & Anukaliani, A. (2011). Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Materials Letters, 65(12), 1797–1800. https://doi.org/10.1016/j.matlet.2011.03.079

    Article  CAS  Google Scholar 

  • Nasseh, N., Barikbin, B., Taghavi, L., & Nasseri, M. A. (2019). Degradation of metronidazole antibiotic using a novel synthesized magnetic nanocomposite in heterogeneous fenton-like catalytic process. Journal of Water and Wastewater; Ab va Fazilab (in persian)30, 94–108. https://doi.org/10.22093/wwj.2018.108475.2550

  • Nasseh, N., Al-Musawi, T. J., Khosravi, R., Panahi, A. H., Arghavan, F. S., & Barikbin, B. (2021a). FeNi3 @SiO2 @CuS magnetic nanocomposite: Synthesizing, characterization, and application for methylene blue adsorption. Desalination and Water Treatment, 210, 402–414. https://doi.org/10.5004/dwt.2021.26456

  • Nasseh, N., Khosravi, R., Mazari, M. N. S., & Rezani, S. (2021b). Effect of UVC and UVA photocatalytic processes on tetracycline removal using CuS-coated magnetic activated carbon nanocomposite: A comparative study. International Journal of Environmental Research and Public Health, 18, 11163. https://doi.org/10.3390/ijerph182111163

    Article  CAS  Google Scholar 

  • Nasseh, N., Arghavan, F. S., Daglioglu, N., & Asadi, A. (2021c). Fabrication of novel magnetic CuS/Fe3O4/GO nanocomposite for organic pollutant degradation under visible light irradiation. Environmental Science and Pollution Research, 28, 19222–19233. https://doi.org/10.1007/s11356-020-12066-3

    Article  CAS  Google Scholar 

  • Nasseh, N., Samadi, M. T., Ghadirian, M., Panahi, A. H., & Rezaie, A. (2022). Photo-catalytic degradation of tamoxifen by using a novel synthesized magnetic nanocomposite of FeCl2@ac@ZnO: A study on the pathway, modeling, and sensitivity analysis using artificial neural network (AAN). Journal of Environmental Chemical Engineering 10, 107450. https://doi.org/10.1016/j.jece.2022.107450

  • Rahimi, S. M., Panahi, A. H., Moghaddam, N. S. M., Allahyari, E., & Nasseh N. (2022). Breaking down of low-biodegradation Acid Red 206 dye using bentonite/Fe3O4/ZnO magnetic nanocomposite as a novel photo-catalyst in presence of UV light. Chemical Physics Letters, 794, 139480. https://doi.org/10.1016/j.cplett.2022.139480

  • Ramstad, A., Colquhoun, D. J., Nordmo, R., Sutherland, I. H., & Simmons, R. (2002). Field trials in Norway with SLICE (0.2% emamectin benzoate) for the oral treatment of sea lice infestation in farmed Atlantic salmon Salmo salar. Diseases of Aquatic Organisms50(1), 29–33. https://doi.org/10.3354/dao050029

  • Rizo, J., Díaz, D., Reyes-Trejo, B., & Arellano-Jiménez, M. J. (2020). Cu2O nanoparticles for the degradation of methyl parathion. Beilstein Journal of Nanotechnology, 11, 1546–1555. https://doi.org/10.3762/bjnano.11.137

    Article  CAS  Google Scholar 

  • Sadia, M., Naz, R., Khan, J., Zahoor, M., Ullah, R., Khan, R., Naz, S., Almoallim, H. S., & Alharbi, S. A. (2021). Metal doped titania nanoparticles as efficient photocatalyst for dyes degradation. Journal of King Saud University-Science, 33(2), 101312. https://doi.org/10.1016/j.jksus.2020.101312

  • Saiganesh, S., Krishnan, T., Narasimha, G., Almoallim, H. S., Alhari, S. A., Reddy, L. V. Mallikarjuna, K., Mohammed, A., & Prabhakar, V. S. V. (2021). Phytosynthetic, fabrication of lanthanum ion-doped nickel oxide nanoparticles using Sesbania grandiflora leaf extract and their anti-microbial properties. Crystals, 11, 124. https://doi.org/10.3390/cryst11020124

  • Saleh, R., & Djaja, N. F. (2014). Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 130, 581–590. https://doi.org/10.1016/j.saa.2014.03.089

    Article  CAS  Google Scholar 

  • Saroj, S., Singh, L., & Sing, S. V. (2020). Solution-combustion synthesis of anion (iodine) doped TiO2 nanoparticles for photocatalytic degradation of Direct Blue 199 dye and regeneration of used photocatalyst. Journal of Photochemistry Photobiology A: Chemistry 396, 112532. https://doi.org/10.1016/j.jphotochem.2020.112532

  • Sarteep, Z., Ebrahimian Pirbazari, A., & Aroon, M. A. (2016). Silver doped tio2 nanoparticles: Preparation, characterization and efficient degradation of 2,4-dichlorophenol Under Visible Light. Journal of Water and Environmental Nanotechnology, 1(2), 135–144. https://doi.org/10.7508/jwent.2016.02.007

    Article  Google Scholar 

  • Selvam, N. C. S., Vijaya, J. J., & Kennedy, L. J. (2013). Comparative studies on influence of morphology and La doping on structural, optical, and photocatalytic properties of zinc oxide nanostructures. Journal of Colloid Interface Science, 407, 215–224. https://doi.org/10.1016/j.jcis.2013.06.004

    Article  CAS  Google Scholar 

  • Taghizadeh, S. F., Goumenou, M., Rezaee, R., Alegakis, T., Kokaraki, V., Anesti, O., Sarigiannis, D. A., Tsatsakis, A., & Karimi, G. (2019). Cumulative risk assessment of pesticide residues in different Iranian pistachio cultivars: Applying the source specific HQS and adversity specific HIA approaches in Real Life Risk Simulations (RLRS). Toxicology LettErs, 313, 91–100. https://doi.org/10.1016/j.toxlet.2019.05.019

    Article  CAS  Google Scholar 

  • Tariq, S. R., Rafique, N., Kiran, S., & Khan, A. M. (2014). Photo-induced degradation of emamectin benzoate: Effect of iron amendments and solvent system. Environmental Earth Sciences, 72, 983–988. https://doi.org/10.1007/s12665-013-3015-6

    Article  CAS  Google Scholar 

  • Thilagavathi, T., Venugopal, D., Marnadu, R., Chandrasekaran, J., Thangaraju, D., Palanivel, B., Hamdy, M. S., Shkir, M., & Ali, H. E. (2021). WO3/CoWO4 nanocomposite synthesis using a facile co-precipitation method for enhanced photocatalytic applications. Journal of Physics and Chemistry Solids, 154, 110066. https://doi.org/10.1016/j.jpcs.2021.110066

  • Vignesh, K., Rajarajan, M., & Suganthi, A. (2014). Visible light assisted photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation of methylene blue dye. Journal of Industrial and Engineering Chemistry, 20(5), 3826–3833. https://doi.org/10.1016/j.jiec.2013.12.086

    Article  CAS  Google Scholar 

  • Wang, S., Qi, Y., Desneux, N., Shi, X., Biondi, A., & Gao, X. (2017). Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. Journal of Pest Science, 90, 389–396. https://doi.org/10.1007/s10340-016-0770-7

    Article  Google Scholar 

  • Wongrerkdee, S., Wongrerkdee, S., Boonruang, C., & Sujinnapram, S. (2023). Enhanced photocatalytic degradation of methylene blue using Ti-doped ZnO nanoparticles synthesized by rapid combustion. Toxics, 11, 33. https://doi.org/10.3390/toxics11010033

    Article  CAS  Google Scholar 

  • Yeganeh, M., Charkhloo, E., Sobhi, H. R., Esrafili, A., & Gholami, M. (2022). Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chemical Engineering Journal, 428, 130081. https://doi.org/10.1016/j.cej.2021.130081

  • Zare, E. N., Iftekhar, S., Park, Y., Joseph, J., Srivastava, V., Khan, M. A., Makvandi, P., Sillanpaa, M., & Varma, R. S. (2021). An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere280, 130907. https://doi.org/10.1016/j.chemosphere.2021.130907

  • Zhang, X., Hao, X., Huo, S., Lin, W., Xia, X., Liu, K., & Duan, B. (2019). Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant. Archives of Microbiology, 201(9), 1207–1217. https://doi.org/10.1007/s00203-019-01686-0

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by Huma Khalid. The first draft of the manuscript was written by Atta ul Haq. Syed Ali Raza Naqvi, Muhammad Usman, and Tanveer Hussain Bokhari commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Atta ul Haq.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Consent to participate

All the authors participated equally in this study.

Consent for publication

All the authors agreed to publish this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, H., Haq, A.u., Naqvi, S.A.R. et al. Enhancement of photocatalytic activity of Ba-doped CoO for degradation of Emamectin benzoate in aqueous solution. Environ Monit Assess 195, 1245 (2023). https://doi.org/10.1007/s10661-023-11864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11864-9

Keywords

Navigation