Skip to main content

Advertisement

Log in

Interactions of urbanisation, climate variability, and infectious disease dynamics: insights from the Coimbatore district of Tamil Nadu

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change and shifts in land use/land cover (LULC) are critical factors affecting the environmental, societal, and health landscapes, notably influencing the spread of infectious diseases. This study delves into the intricate relationships between climate change, LULC alterations, and the prevalence of vector-borne and waterborne diseases in Coimbatore district, Tamil Nadu, India, between 1985 and 2015. The research utilised Landsat-4, Landsat-5, and Landsat-8 data to generate LULC maps, applying the maximum likelihood algorithm to highlight significant transitions over the years. This study revealed that built-up areas have increased by 67%, primarily at the expense of agricultural land, which was reduced by 51%. Temperature and rainfall data were obtained from APHRODITE Water Resources, and with a statistical analysis of the time series data revealed an annual average temperature increase of 1.8 °C and a minor but statistically significant rainfall increase during the study period. Disease data was obtained from multiple national health programmes, revealing an increasing trend in dengue and diarrhoeal diseases over the study period. In particular, dengue cases surged, correlating strongly with the increase in built-up areas and temperature. This research is instrumental for policy decisions in public health, urban planning, and climate change mitigation. Amidst limited research on the interconnections among infectious diseases, climate change, and LULC changes in India, our study serves as a significant precursor for future management strategies in Coimbatore and analogous regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Data is available based on the request to the corresponding author.

References

  • Ahmed, S. H. (2017). Detection of urban expansion and its impact on land surface temperatures in Kirkuk, Iraq, using remote sensing and GIS (Master’s Thesis). http://79.123.248.18/handle/20.500.12898/5246

  • Alenou, L. D., Nwane, P., Mbakop, L. R., Piameu, M., Ekoko, W., Mandeng, S., Bikoy, E. N., Toto, J. C., Onguina, H., & Etang, J. (2023). Burden of mosquito-borne diseases across rural versus urban areas in Cameroon between 2002 and 2021: Prospective for community-oriented vector management approaches. Parasites & Vectors, 16(1), 1–14.

    Google Scholar 

  • Alirol, E., Getaz, L., Stoll, B., Chappuis, F., & Loutan, L. (2011). Urbanisation and infectious diseases in a globalised world. The Lancet Infectious Diseases, 11(2), 131–141.

    Google Scholar 

  • Anand, B., Rekha, R. S., Remitha, K. R., Maniyammai, V., Ramaswamy, K., & Gautam, S. (2023). Dynamic change analysis of water spread region and its impact assessment using spectral indices of remotely sensed data. Environment, Development and Sustainability, 1–18.

  • Andrade, B. B., Menezes, R. C., Ferreira, I. B., Rosier, G. L., Villalva, K., Campos, V., Passos, B., Argolo, J., Santana, G. C., Garcia, S., & Pustilnik, H. N. (2023). Grand Challenges in Major Tropical Diseases: Part II. Frontiers in Tropical Diseases, 4, 30.

    Google Scholar 

  • Anitha Selvasofia, S. D. (2021). Land Use and Land Cover Change Detection Using GIS and Remote Sensing of Coimbatore District, Tamilnadu. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 1660–1665.

    Google Scholar 

  • Arif, M., Sengupta, S., Mohinuddin, S. K., & Gupta, K. (2023). Dynamics of land use and land cover change in peri-urban area of Burdwan city (pp. 1–25). A remote sensing and GIS-based approach. GeoJournal.

    Google Scholar 

  • Asaaga, F. A., Purse, B. V., Rahman, M., Srinivas, P. N., Kalegowda, S. D., Seshadri, T., Young, J. C., & Oommen, M. A. (2023). The role of social vulnerability in improving interventions for neglected zoonotic diseases: The example of Kyasanur Forest Disease in India. PLOS Global Public Health, 3(2), e0000758.

    Google Scholar 

  • Avtar, R., Yunus, A. P., Saito, O., Kharrazi, A., Kumar, P., & Takeuchi, K. (2022). Multi-temporal remote sensing data to monitor terrestrial ecosystem responses to climate variations in Ghana. Geocarto International, 37(2), 396–412.

    Google Scholar 

  • Bandh, S. A., Shafi, S., Peerzada, M., Rehman, T., Bashir, S., Wani, S. A., & Dar, R. (2021). Multidimensional analysis of global climate change: A review. Environmental Science and Pollution Research, 28, 24872–24888.

    CAS  Google Scholar 

  • Bandyopadhyay, S., Bandyopadhyay, S., Dasgupta, S., Mallik, C., & Wheeler, D. (2022). Discounting disaster: Land markets and climate change in the Indian Sundarbans. Ecology, Economy and Society–the INSEE Journal, 5(2).

  • Barouki, R., Kogevinas, M., Audouze, K., Belesova, K., Bergman, A., Birnbaum, L., Boekhold, S., Denys, S., Desseille, C., Drakvik, E., & Frumkin, H. (2021). The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 146, 106272.

    CAS  Google Scholar 

  • Barrett, R., & Armelagos, G. (2013). An unnatural history of emerging infections. OUP Oxford.

  • Basuki, T. M., Nugroho, H. Y. S. H., Indrajaya, Y., Pramono, I. B., Nugroho, N. P., Supangat, A. B., Indrawati, D. R., Savitri, E., Wahyuningrum, N., & Purwanto, & Cahyono, S. A. (2022). Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A review. Sustainability, 14(16), 9997.

    CAS  Google Scholar 

  • Beck-Johnson, L. M., Nelson, W. A., Paaijmans, K. P., Read, A. F., Thomas, M. B., & Bjørnstad, O. N. (2013). The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE, 8(11), e79276.

    Google Scholar 

  • Bera, A., Meraj, G., Kanga, S., Farooq, M., Singh, S. K., Sahu, N., & Kumar, P. (2022). Vulnerability and risk assessment to climate change in Sagar Island. India. Water, 14(5), 823. https://doi.org/10.3390/w14050823

    Article  Google Scholar 

  • Bertola, M., Mazzucato, M., Pombi, M., & Montarsi, F. (2022). Updated occurrence and bionomics of potential malaria vectors in Europe: A systematic review (2000–2021). Parasites & Vectors, 15(1), 88.

    Google Scholar 

  • Biswas, J. K., Mukherjee, P., Vithanage, M., & Prasad, M. N. V. (2023a). Emergence and re‐emergence of emerging infectious diseases (EIDs) looking at “One Health” through the lens of ecology. One Health: Human, Animal, and Environment Triad, 19–37.

  • Biswas, S., Rajkonwar, J., Nirmolia, T., Jena, S. R., Sarkar, U., Bhattacharyya, D. R., Borkakoty, B., et al. (2023b). First report of rubber collection bowls & plastic and bamboo water containers as the major breeding source of Ae. albopictus with the indigenous transmission of Dengue and Chikungunya in rural forested malaria-endemic villages of Dhalai District, Tripura, India: The importance of molecular identification. Biomedicines, 11(8), 2186.

  • Bondo, K. J., Montecino-Latorre, D., Williams, L., Helwig, M., Duren, K., Hutchinson, M. L., & Walter, W. D. (2023). Spatial modeling of two mosquito vectors of West Nile virus using integrated nested Laplace approximations. Ecosphere, 14(1), e4346.

    Google Scholar 

  • Cao, S., Cai, Y., Du, M., Weng, Q., & Lu, L. (2022). Seasonal and diurnal surface urban heat islands in China: An investigation of driving factors with three-dimensional urban morphological parameters. Giscience & Remote Sensing, 59(1), 1121–1142.

    Google Scholar 

  • De Castro, M. C., Yamagata, Y., Mtasiwa, D., Tanner, M., Utzinger, J., Keiser, J., & Singer, B. H. (2004). Integrated urban malaria control: A case study in Dar es Salaam, Tanzania. In The Intolerable Burden of Malaria II: What’s New, What’s Needed: Supplement to Volume 71 (2) of the American Journal of Tropical Medicine and Hygiene. American Society of Tropical Medicine and Hygiene.

  • Cevidanes, A., Goiri, F., Barandika, J. F., Vázquez, P., Goikolea, J., Zuazo, A., Etxarri, N., Ocio, G., & García-Pérez, A. L. (2023). Invasive Aedes mosquitoes in an urban—peri-urban gradient in northern Spain: Evidence of the wide distribution of Aedes japonicus. Parasites & Vectors, 16(1), 1–10.

    Google Scholar 

  • Chakrabortty, R., Pal, S. C., Janizadeh, S., Santosh, M., Roy, P., Chowdhuri, I., & Saha, A. (2021). Impact of climate change on future flood susceptibility: An evaluation based on deep learning algorithms and GCM model. Water Resources Management, 35, 4251–4274.

    Google Scholar 

  • Chala, B., & Hamde, F. (2021). Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review. Frontiers in Public Health, 9, 715759.

    Google Scholar 

  • Chen, L., & Ford, T. W. (2023). Future changes in the transitions of monthly-to-seasonal precipitation extremes over the Midwest in Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 43(1), 255–274.

    Google Scholar 

  • Chisadza, B., Ncube, F., Macherera, M., Bangira, T., & Gwate, O. (2023). Spatio-temporal variations in the ecological vulnerability of the Upper Mzingwane sub-catchment of Zimbabwe. Geomatics, Natural Hazards and Risk, 14(1), 2190857.

    Google Scholar 

  • Choudhury, U., Singh, S. K., Kumar, A., Meraj, G., Kumar, P., & Kanga, S. (2023). Assessing Land Use/Land Cover Changes and Urban Heat Island Intensification: A Case Study of Kamrup Metropolitan District, Northeast India (2000–2032). Earth, 4(3), 503–521. https://doi.org/10.3390/earth4030026

    Article  Google Scholar 

  • Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(6797), 762–767.

    CAS  Google Scholar 

  • Colón-González, F. J., Sewe, M. O., Tompkins, A. M., Sjödin, H., Casallas, A., Rocklöv, J., & Stenlund, H. (2021). Projecting the risk of mosquito-borne diseases in a warmer and more populated world: A multi-model, multi-scenario intercomparison modelling study. The Lancet Planetary Health, 5(4), e210–e221.

    Google Scholar 

  • Connolly, C., Keil, R., & Ali, S. H. (2021). Extended urbanisation and the spatialities of infectious disease: Demographic change, infrastructure and governance. Urban Studies, 58(2), 245–263.

  • Dalziel, B. D., Kissler, S., Gog, J. R., Viboud, C., Bjørnstad, O. N., Metcalf, C. J. E., & Grenfell, B. T. (2018). Urbanization and humidity shape the intensity of influenza epidemics in US cities. Science, 362(6410), 75–79.

    CAS  Google Scholar 

  • Das, T., Shahfahad, N., & M. W., Talukdar, S., Parvez, A., Rahman, A., Pal, S., Asgher, M. S., Islam, A. R. M. T., & Mosavi, A. (2022). Analysing process and probability of built-up expansion using machine learning and fuzzy logic in English Bazar. West Bengal. Remote Sensing, 14(10), 2349.

    Google Scholar 

  • Debnath, J., Sahariah, D., Lahon, D., Nath, N., Chand, K., Meraj, G., Farooq, M., Kumar, P., Kanga, S., & Singh, S. K. (2022). Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environmental Science and Pollution Research, 1–24. https://doi.org/10.1007/s11356-022-24248-2

  • Dhanya, P., & Geethalakshmi, V. (2023). Reviewing the status of droughts, early warning systems and climate services in South India: Experiences learned. Climate, 11(3), 60.

    Google Scholar 

  • Dhanya, P., Jayarajan, K., & Selvaraj, S. (2023). Evaluation of urban land surface temperatures and land use/land cover dynamics for Palakkad Municipality, Kerala, for sustainable management. In U. Commons (Ed.), Future Smart Cities and Sustainability (pp. 533–550). Springer International Publishing.

    Google Scholar 

  • Djègbè, I., Zinsou, M., Dovonou, E. F., Tchigossou, G., Soglo, M., Adéoti, R., Gbaguidi, B., Atoyebi, S., Chandre, F., Akogbéto, M., & Lines, J. (2020). Minimal tillage and intermittent flooding farming systems show a potential reduction in the proliferation of Anopheles mosquito larvae in a rice field in Malanville. Northern Benin. Malaria Journal, 19(1), 1–10.

    Google Scholar 

  • Doumbe-Belisse, P., Kopya, E., Ngadjeu, C. S., Sonhafouo-Chiana, N., Talipouo, A., Djamouko-Djonkam, L., Awono-Ambene, H. P., Wondji, C. S., Njiokou, F., & Antonio-Nkondjio, C. (2021). Urban malaria in sub-Saharan Africa: Dynamic of the vectorial system and the entomological inoculation rate. Malaria Journal, 20, 1–18.

    Google Scholar 

  • Dummer, T. J., & Cook, I. G. (2008). Health in China and India: A cross-country comparison in a context of rapid globalisation. Social Science & Medicine, 67(4), 590–605.

    Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289(5487), 2068–2074.

    CAS  Google Scholar 

  • Elagali, A., Ahmed, A., Makki, N., Ismail, H., Ajak, M., Alene, K. A., Weiss, D. J., Mohammed, A. A., Abubakr, M., Cameron, E., & Gething, P. (2022). Spatiotemporal mapping of malaria incidence in Sudan using routine surveillance data. Scientific Reports, 12(1), 14114.

    CAS  Google Scholar 

  • Ellena, M., Breil, M., & Soriani, S. (2020). The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Climate, 34, 100676.

    Google Scholar 

  • Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. L., Valverde-Villegas, J. A. C. Q. U. E. L. I. N. E., VEIGA, A. B. G., Spilki, F. R., Fearnside, P. M., Caesar, L., Giatti, L. L., Wallau, G. L., & Almeida, S. E. (2020). Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais da Academia Brasileira de Ciências, 92.

  • Epstein, P. R. (2000). Is global warming harmful to health? Scientific American, 283(2), 50–57.

    CAS  Google Scholar 

  • Epstein, P. R., Diaz, H. F., Elias, S., Grabherr, G., Graham, N. E., Martens, W. J., Mosley-Thompson, E., & Susskind, J. (1998). Biological and physical signs of climate change: Focus on mosquito-borne diseases. Bulletin of the American Meteorological Society, 79(3), 409–418.

    Google Scholar 

  • Eum, H. I., Fajard, B., Tang, T., & Gupta, A. (2023). Potential changes in climate indices in Alberta under projected global warming of 1.5–5° C. Journal of Hydrology: Regional Studies, 47, 101390.

  • Ewing, D. A., Purse, B. V., Cobbold, C. A., & White, S. M. (2021). A novel approach for predicting risk of vector-borne disease establishment in marginal temperate environments under climate change: West Nile virus in the UK. Journal of the Royal Society Interface, 18(178), 20210049.

    Google Scholar 

  • Faust, C. L., Dobson, A. P., Gottdenker, N., Bloomfield, L. S., McCallum, H. I., Gillespie, T. R., Diuk-Wasser, M., & Plowright, R. K. (2017). Null expectations for disease dynamics in shrinking habitat: Dilution or amplification? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1722), 20160173.

    Google Scholar 

  • Forsyth, J. E., Mutuku, F. M., Kibe, L., Mwashee, L., Bongo, J., Egemba, C., Ardoin, N. M., & LaBeaud, A. D. (2020). Source reduction with a purpose: Mosquito ecology and community perspectives offer insights for improving household mosquito management in coastal Kenya. PLoS Neglected Tropical Diseases, 14(5), e0008239.

    Google Scholar 

  • Fox, M., Zuidema, C., Bauman, B., Burke, T., & Sheehan, M. (2019). Integrating public health into climate change policy and planning: State of practice update. International Journal of Environmental Research and Public Health, 16(18), 3232.

    Google Scholar 

  • Ganeshkumar, P., Murhekar, M. V., Poornima, V., Saravanakumar, V., Sukumaran, K., Anandaselvasankar, A., John, D., & Mehendale, S. M. (2018). Dengue infection in India: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 12(7), e0006618.

    Google Scholar 

  • Gerken, K. N., Maluni, J., Mutuku, F. M., Ndenga, B. A., Mwashee, L., Ichura, C., Shaita, K., Mwaniki, M., Orwa, S., Seetah, K., & LaBeaud, A. D. (2023). Exploring potential risk pathways with high risk groups for urban Rift Valley fever virus introduction, transmission, and persistence in two urban centers of Kenya. PLOS Neglected Tropical Diseases, 17(1), e0010460.

    Google Scholar 

  • Giles-Corti, B., Moudon, A. V., Lowe, M., Cerin, E., Boeing, G., Frumkin, H., Salvo, D., Foster, S., Kleeman, A., Bekessy, S., & de Sá, T. H. (2022). What next? Expanding our view of city planning and global health, and implementing and monitoring evidence-informed policy. The Lancet Global Health, 10(6), e919–e926.

    CAS  Google Scholar 

  • Greenberg, M. (2021). Seeking Shelter: How housing and urban exclusion shape exurban disaster. Sociologica, 15(1), 67–89.

    Google Scholar 

  • Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science, 120. https://doi.org/10.1007/s12040-011-0082-5

  • Guntukula, R. (2020). Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. Journal of Public Affairs, 20(1), e2040.

    Google Scholar 

  • Guo, L., Di, L., Zhang, C., Lin, L., Chen, F., & Molla, A. (2022). Evaluating contributions of urbanization and global climate change to urban land surface temperature change: A case study in Lagos. Nigeria. Scientific Reports, 12(1), 14168.

    CAS  Google Scholar 

  • Gupta, A. K., Negi, M., Nandy, S., Alatalo, J. M., Singh, V., & Pandey, R. (2019). Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecological Indicators, 106, 105512.

    Google Scholar 

  • Gupta, S. K., Kanga, S., Meraj, G., Kumar, P., & Singh, S. K. (2023). Uncovering the hydro-meteorological drivers responsible for forest fires utilizing geospatial techniques. Theoretical and Applied Climatology, 153, 675–695. https://doi.org/10.1007/s00704-023-04497-y

    Article  Google Scholar 

  • Hauser, M., Thiery, W., & Seneviratne, S. I. (2019). Potential of global land water recycling to mitigate local temperature extremes. Earth System Dynamics, 10(1), 157–169.

    Google Scholar 

  • Hu, Y., Jia, G., Hou, M., Zhang, X., Zheng, F., & Liu, Y. (2015). The cumulative effects of urban expansion on land surface temperatures in metropolitan JingjinTang. China. Journal of Geophysical Research: Atmospheres, 120(19), 9932–9943.

    Google Scholar 

  • Huang, S., Gan, Y., Zhang, X., Chen, N., Wang, C., Gu, X., Ma, J., & Niyogi, D. (2023). Urbanization amplified asymmetrical changes of rainfall and exacerbated drought: Analysis over five urban agglomerations in the Yangtze River Basin, China. Earth’s Future, 11(2), e2022EF003117.

  • IPCC. (2019). Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (p. 616). Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

  • Ivajnšič, D., Kaligarič, M., & Žiberna, I. (2014). Geographically weighted regression of the urban heat island of a small city. Applied Geography, 53, 341–353.

    Google Scholar 

  • Jaiswal, R. K., Saxena, R., & Mukherjee, S. (1999). Application of remote sensing technology for land use/land cover change analysis. Journal of the Indian Society of Remote Sensing, 27(2), 123.

    Google Scholar 

  • Jindal, A. K., Pandya, K., & Khan, I. D. (2015). Antimicrobial resistance: A public health challenge. Medical Journal Armed Forces India, 71(2), 178–181.

    CAS  Google Scholar 

  • Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J., Burton, C., Betts, R. A., van der Werf, G. R., & Sitch, S. (2022). Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, 60(3), e2020RG000726.

  • Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993.

    CAS  Google Scholar 

  • Kanga, S., Meraj, G., Sudhanshu, et al. (2020). Risk assessment to curb COVID-19 contagion: A preliminary study using remote sensing and GIS [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-37862/v1

  • Kanga, S., Meraj, G., Johnson, B. A., Singh, S. K., & PV, M. N., Farooq, M., Kumar, P., Marazi, A., & Sahu, N. (2022a). Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City. India. Remote Sensing, 14(17), 4241.

    Google Scholar 

  • Kanga, S., Meraj, G., Sudhanshu, F., & M., Nathawat, M. S., & Singh, S. K. (2021). Analyzing the risk to COVID-19 infection using remote sensing and GIS. Risk Analysis, 41(5), 801–813.

    Google Scholar 

  • Kanga, S., Singh, S. K., Meraj, G., Kumar, A., Parveen, R., Kranjčić, N., & Đurin, B. (2022b). Assessment of the Impact of Urbanization on Geoenvironmental Settings Using Geospatial Techniques: A Study of Panchkula District. Haryana. Geographies, 2(1), 1–10. https://doi.org/10.3390/geographies2010001

    Article  Google Scholar 

  • Khan, I. D. (2016a). Challenges and opportunities in diagnosis and management of infectious diseases in developing country healthcare system. Journal of Basic and Clinical Medicine, 5(1).

  • Khan, I. D. (2016b). Rapid diagnosis of dengue outbreaks in resource-limited facilities. Anchor Academic Publishing.

  • Khan, I. D., Gupta, R. M., Sen, S., Rajmohan, K. S., Jindal, A. K., Makkar, A., ... & Nair, G. L. (2017). Emerging antimicrobial resistance and evolving healthcare: Dangerous crossroads for the community and the military. Journal of Archives in Military Medicine, 5(3).

  • Khan, I. D., Sahni, A. K., Bharadwaj, R., Lall, M., Jindal, A. K., & Sashindran, V. K. (2014). Emerging organisms in a tertiary healthcare set up. Medical Journal Armed Forces India, 70(2), 120–128.

    Google Scholar 

  • Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of climate change over the Indian region: A report of the Ministry of Earth Sciences (MOES), Government of India (p. 226). Springer Nature.

  • Kumar, A. N., Murugan, K., Vincent, C. T., Madhiyazhagan, P., Nataraj, T., & Shobana, K. (2015). The distribution of Culex mosquitoes in Coimbatore, Tamil Nadu, India. Journal of Entomological and Acarological Research, 47(1), 1–15.

    Google Scholar 

  • Kumari, S., Chauhan, A., & Shankar, V. (2021). Assessment of climate change implications on landslides in mid and high hills of Himachal Pradesh, India. Arabian Journal of Geosciences, 14, 1–15.

    Google Scholar 

  • Lastrucci, V., Lorini, C., Caini, S., Florence Health Literacy Research Group, & Bonaccorsi, G. (2019). Health literacy as a mediator of the relationship between socioeconomic status and health: A cross-sectional study in a population-based sample in Florence. PLoS ONE, 14(12), e0227007.

    Google Scholar 

  • Laxminarayan, R., Kakkar, M., Horby, P., Malavige, G. N., & Basnyat, B. (2017). Emerging and re-emerging infectious disease threats in South Asia: Status, vulnerability, preparedness, and outlook. bmj, 357.

  • Leal Filho, W., Balogun, A. L., Olayide, O. E., Azeiteiro, U. M., Ayal, D. Y., ... & Saroar, M. (2019). Assessing the impacts of climate change in cities and their adaptive capacity: Towards transformative approaches to climate change adaptation and poverty reduction in urban areas in a set of developing countries. Science of the Total Environment, 692, 1175–1190.

  • Li, H., & Song, W. (2023). Spatial transformation of changes in global cultivated land. Science of the Total Environment, 859, 160194.

    CAS  Google Scholar 

  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation. John Wiley & Sons.

    Google Scholar 

  • Madhanagopal, D., & Pattanaik, S. (2020). Exploring fishermen’s local knowledge and perceptions in the face of climate change: The case of coastal Tamil Nadu, India. Environment, Development and Sustainability, 22, 3461–3489.

    Google Scholar 

  • Makkar, A., Gupta, S., Khan, I. D., Gupta, R. M., Rajmohan, K. S., ... & Malik, M. (2018). Epidemiological profile and antimicrobial resistance pattern of enteric fever in a tertiary care hospital of North India: A seven-year ambispective study. Acta Med (Hradec Kralove), 61(4), 125–130.

  • Mannelli, A., Bertolotti, L., Gern, L., & Gray, J. (2012). Ecology of Borrelia burgdorferi sensu lato in Europe: Transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiology Reviews, 36(4), 837–861.

    CAS  Google Scholar 

  • Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H., & McMichael, A. J. (1995). Potential impact of global climate change on malaria risk. Environmental Health Perspectives, 103(5), 458–464.

    CAS  Google Scholar 

  • Masroor, M., Avtar, R., Sajjad, H., Choudhari, P., Kulimushi, L. C., Khedher, K. M., ... & Sahu, N. (2022). Assessing the influence of land use/land cover alteration on climate variability: an analysis in the aurangabad district of Maharashtra State, India. Sustainability14(2), 642.

  • Mavrouli, M., Mavroulis, S., Lekkas, E., & Tsakris, A. (2022). Infectious Diseases Associated with Hydrometeorological Hazards in Europe: Disaster Risk Reduction in the Context of the Climate Crisis and the Ongoing COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(16), 10206.

    Google Scholar 

  • Meadows, J., McMichael, C., & Campbell, P. T. (2023). Predictive modelling of Ross River virus using climate data in the Darling Downs. Epidemiology & Infection, 151, e55.

    Google Scholar 

  • Menezes, R. C., Ferreira, I. B., Rosier, G. L., Villalva-Serra, K., Campos, V. M., Passos, B. B., ... & Silva, R. R. (2023). Grand challenges in major tropical diseases: Part II.

  • Meraj, G. (2021). Assessing the impacts of climate change on ecosystem service provisioning in Kashmir Valley India (Ph.D. Thesis). Available online: http://hdl.handle.net/10603/354338 (accessed on 15 October 2022).

  • Meraj, G., Kanga, S., Ambadkar, A., Kumar, P., Singh, S. K., Farooq, M., ... & Sahu, N. (2022a). Assessing the yield of wheat using satellite remote sensing-based machine learning algorithms and simulation modeling. Remote Sensing, 14(13), 3005.

  • Meraj, G., Romshoo, S. A., Yousuf, A. R., Altaf, S., & Altaf, F. (2015). Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Natural Hazards, 77, 153–175.

    Google Scholar 

  • Meraj, G., Singh, S. K., Kanga, S., &, et al. (2022b). Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ., 8, 15–34. https://doi.org/10.1007/s40808-021-01131-6

    Article  Google Scholar 

  • Mishra, P. K., Rai, A., & Rai, S. C. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 133–143.

    Google Scholar 

  • Mishra, R. K. (2023). Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1–78.

    CAS  Google Scholar 

  • Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538.

    Google Scholar 

  • Mordecai, E. A., Caldwell, J. M., Grossman, M. K., Lippi, C. A., Johnson, L. R., ... & Shocket, M. S. (2019). Thermal biology of mosquito-borne disease. Ecology Letters, 22(10), 1690–1708.

  • Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue transmission: Evidence and implications. Environmental Health Perspectives, 121(11–12), 1264–1272.

    Google Scholar 

  • Morin, C. W., Semenza, J. C., Trtanj, J. M., Glass, G. E., Boyer, C., & Ebi, K. L. (2018). Unexplored opportunities: Use of climate-and weather-driven early warning systems to reduce the burden of infectious diseases. Current Environmental Health Reports, 5, 430–438.

    Google Scholar 

  • Moua, Y., Kotchi, S. O., Ludwig, A., & Brazeau, S. (2021). Mapping the habitat suitability of West Nile virus vectors in Southern Quebec and Eastern Ontario, Canada, with species distribution modeling and satellite earth observation data. Remote Sensing, 13(9), 1637.

    Google Scholar 

  • Myers, S. S., & Patz, J. A. (2009). Emerging threats to human health from global environmental change. Annual Review of Environment and Resources, 34, 223–252.

    Google Scholar 

  • Ogbulafor, N., Uhomoibhi, P., Shekarau, E., Nikau, J., Okoronkwo, C., Fanou, N. M., ... & Merle, C. (2023). Facilitators and barriers to seasonal malaria chemoprevention (SMC) uptake in Nigeria: A qualitative approach. Malaria Journal, 22(1), 1–13.

  • Ototo, E. N., Ogutu, J. O., Githeko, A., Said, M. Y., Kamau, L., Namanya, D., ... & Mutimba, S. (2022). Forecasting the potential effects of climate change on malaria in the Lake Victoria Basin using regionalized climate projections. Acta Parasitologica, 1–29.

  • Patil, R., Kumar, C. S., & Bagvandas, M. (2017). Biodiversity loss: Public health risk of disease spread and epidemics. Annals of Tropical Medicine and Public Health, 10(6).

  • Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438(7066), 310–317.

    CAS  Google Scholar 

  • Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., ... & Terzago, S. (2022). Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics, 60(1), e2020RG000730.

  • Poonia, B., Khan, I. D., Makkar, A., Rajmohan, K. S., Kumar, D., Malik, A., Gupta, S., Banerjee, P., Panda, P. S., & Gupta, R. M. (2018). Typhoidal Salmonella and emerging resistance in outbreak proportions. International Journal of Travel Medicine and Global Health, 6(2), 64–68.

    Google Scholar 

  • Pradhan, S., Dhar, A., Tiwari, K. N., & Sahoo, S. (2022). Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India. Environment, Development and Sustainability, 1–30.

  • Prist, P. R., Siliansky de Andreazzi, C., Vidal, M. M., Zambrana‐Torrelio, C., Daszak, P., Carvalho, R. L., & Tambosi, L. R. (2023). Promoting landscapes with a low zoonotic disease risk through forest restoration: The need for comprehensive guidelines. Journal of Applied Ecology.

  • Ramachandra, T. V., & Setturu, B. (2023). Ecologically sensitive regions in Belgaum district, Karnataka, Central Western Ghats. Journal of Environmental Biology, 44(1), 11–26.

    Google Scholar 

  • Ranga, V., Pani, P., Kanga, S., Meraj, G., Farooq, M., Nathawat, M. S., & Singh, S. K. (2020). National Health-GIS Portal-A conceptual framework for effective epidemic management and control in India. Preprints, 2020060325. https://doi.org/10.20944/preprints202006.0325.v1

  • Rehman, F., & Khan, A. (2022). Environmental Impacts of Urbanization Encroachment in the Lowlands of Khyber Pakhtunkhwa. Pakistan. Sustainability, 14(19), 11959.

    Google Scholar 

  • Robson, M. G., Toscano, W. A., Meng, Q., & Kaden, D. A. (2022). Introduction to Risk Assessment. In Risk Assessment for Environmental Health (pp. 1–14). CRC Press.

  • Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., Lampard, P., Rodriguez, B. S., Arnell, N., & Ayeb-Karlsson, S. (2021). The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. The Lancet, 398(10311), 1619–1662.

    Google Scholar 

  • Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., Sarangi, C., & Kanawade, V. P. (2022a). Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50(8), 1615–1640.

    Google Scholar 

  • Roy, P., Pal, S. C., Chakrabortty, R., Saha, A., & Chowdhuri, I. (2022b, December 9). A systematic review on climate change and geo‐environmental factors induced land degradation: Processes, policy‐practice gap and its management strategies. Geological Journal.

  • Roy, S., Pandit, S., Eva, E. A., Bagmar, M. S. H., Papia, M., Banik, L., Dube, T., Rahman, F., & Razi, M. A. (2020). Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long-term Landsat series data. Urban Climate, 32, 100593.

    Google Scholar 

  • Rupasinghe, R., Chomel, B. B., & Martínez-López, B. (2022). Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Tropica, 226, 106225.

    Google Scholar 

  • Saha, A., Pal, S. C., Santosh, M., Janizadeh, S., Chowdhuri, I., Norouzi, A., & Chakrabortty, R. (2021). Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios. Journal of Cleaner Production, 320, 128713.

  • Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., & Kumar, P. (2022). Cellular automata-based artificial neural network model for assessing past, present, and future land use/land cover dynamics. Agronomy, 12(11), 2772.

    Google Scholar 

  • Saravanakumar, V., Lohano, H. D., & Balasubramanian, R. (2022). A district-level analysis for measuring the effects of climate change on production of rice: Evidence from Southern India. Theoretical and Applied Climatology, 150(3–4), 941–953.

    Google Scholar 

  • Shafiq, M. U., Ramzan, S., Ahmed, P., Mahmood, R., & Dimri, A. P. (2019). Assessment of present and future climate change over Kashmir Himalayas, India. Theoretical and Applied Climatology, 137, 3183–3195.

    Google Scholar 

  • Shamsudeen, M., Padmanaban, R., Cabral, P., & Morgado, P. (2022). Spatio-temporal analysis of the impact of landscape changes on vegetation and land surface temperature over Tamil Nadu. Earth, 3(2), 614–638.

    Google Scholar 

  • Shao, Y., Wang, Q. J., Schepen, A., & Ryu, D. (2022). Introducing long-term trends into subseasonal temperature forecasts through trend-aware postprocessing. International Journal of Climatology, 42(9), 4972–4988.

    Google Scholar 

  • Sharma, S., Nahid, S., Sharma, M., Sannigrahi, S., Anees, M. M., Sharma, R., Shekhar, R., Basu, A. S., Pilla, F., Basu, B., & Joshi, P. K. (2020). A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City and Environment Interactions, 7, 100047.

    Google Scholar 

  • Shikary, C., & Rudra, S. (2021). Measuring urban land use change and sprawl using geospatial techniques: A study on Purulia Municipality, West Bengal, India. Journal of the Indian Society of Remote Sensing, 49, 433–448.

    Google Scholar 

  • Shimod, K. P., Prasad, T. K., Vineethkumar, V., Akhil, R., & Jayapal, G. (2023). Geospatial Technology for Analysing the Dynamics in Microclimate with Special Reference to Land Surface Temperature of Tropical Cities: A Case Study. In Urban Commons, Future Smart Cities and Sustainability (pp. 321–340). Springer International Publishing.

  • Shivanna, K. R. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy, 88(2), 160–171.

    Google Scholar 

  • Shukla, R., Agarwal, A., Sachdeva, K., Kurths, J., & Joshi, P. K. (2019). Climate change perception: An analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas. Climatic Change, 152, 103–119.

    Google Scholar 

  • Singh, C., Madhavan, M., Arvind, J., & Bazaz, A. (2021). Climate change adaptation in Indian cities: A review of existing actions and spaces for triple wins. Urban Climate, 36, 100783.

    Google Scholar 

  • Singh, S. (2020). Farmers’ perception of climate change and adaptation decisions: A micro-level evidence from Bundelkhand Region. India. Ecological Indicators, 116, 106475.

    Google Scholar 

  • Skinner, E. B., Glidden, C. K., MacDonald, A. J., & Mordecai, E. A. (2023). Human footprint is associated with shifts in the assemblages of major vector-borne diseases. Nature Sustainability, 1–10.

  • Sreebhagyalakshmi, A., & Thomas, S. (2018). Quality of Life in Slums of Coimbatore City: A Comparative Study. Special Issue for International Youth Symposium, 10, 99–107. http://www.ascgujarat.org/pdf%20Jan18/9.pdf

  • Stanely, N., Jacob, B. G., Masys, A. J., Parikh, J., Izurieta, R., & Ortiz, M. (2019, September). Global Health Security and Disaster Forensics: A solution oriented approach to mapping public health vulnerabilities through predictive analytics. In E-Proceedings of the 38th IAHR World Congress (pp. 1–6).

  • Stendel, M., Francis, J., White, R., Williams, P. D., & Woollings, T. (2021). The jet stream and climate change. In Climate Change (pp. 327–357). Elsevier.

  • Stevenson, M., & Thompson, J. (2019). Health and the compact city. In Decarbonising the Built Environment: Charting the Transition (pp. 245–258).

  • Sumathi, M., Kumaraswamy, K., Thyagarajan, M., & Punithavathi, J. (2011). An Analysis on Land use/Land Cover using Remote Sensing Techniques–A Case Study of Pudukkottai District, Tamilnadu, India. International Journal of Current Research, 33, 304–307.

    Google Scholar 

  • Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., Brinsden, H., Calvillo, A., De Schutter, O., Devarajan, R., & Ezzati, M. (2019). The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. The Lancet, 393(10173), 791–846.

    Google Scholar 

  • Tahir, F., Bansal, D., Ajjur, S. B., Skariah, S., Belhaouari, S. B., Al-Romaihi, H., Al-Thani, M. H., Farag, E., Sultan, A. A., & Al-Ghamdi, S. G. (2023). Assessing the impact of climate conditions on the distribution of mosquito species in Qatar. Frontiers in Public Health, 10, 5490.

    Google Scholar 

  • Tai, X., Anderegg, W. R., Blanken, P. D., Burns, S. P., Christensen, L., & Brooks, P. D. (2020). Hillslope hydrology influences the spatial and temporal patterns of remotely sensed ecosystem productivity. Water Resources Research, 56(11), e2020WR027630.

  • Tajudeen, Y. A., Oladunjoye, I. O., Bajinka, O., & Oladipo, H. J. (2022). Zoonotic Spillover in an Era of Rapid Deforestation of Tropical Areas and Unprecedented Wildlife Trafficking: Into the Wild. Challenges, 13(2), 41.

    Google Scholar 

  • Thiyagarajan, G., Kannan, B., Manikandan, M., Nagarajan, M., & Selvaperumal, A. (2020). Urban sprawl assessment in the Coimbatore City Corporation using GIS for balancing the ecological and economic system. Journal of Green Engineering, 10, 4566–4576.

    Google Scholar 

  • Tilahun, A., & Teferie, B. (2015). Accuracy assessment of land use land cover classification using Google Earth. American Journal of Environmental Protection, 4(4), 193–198. https://doi.org/10.11648/j.ajep.20150404.14

  • Tyagi, S., Garg, N., & Paudel, R. (2014). Environmental degradation: Causes and consequences. European Researcher, 81(8–2), 1491.

    Google Scholar 

  • Ustaoglu, E., & Williams, B. (2022). Institutional settings and effects on agricultural land conversion: A global and spatial analysis of European regions. Land, 12(1), 47.

    Google Scholar 

  • Vora, N. (2008). Impact of anthropogenic environmental alterations on vector-borne diseases. The Medscape Journal of Medicine, 10(10), 238.

    Google Scholar 

  • Wang, G., & Salman, M. (2023). The driving influence of multidimensional urbanization on green total factor productivity in China: Evidence from spatiotemporal analysis. Environmental Science and Pollution Research, 30(18), 52026–52048.

    Google Scholar 

  • Wang, X., Ran, Y., Pang, G., Chen, D., Su, B., Chen, R., Li, X., Chen, H. W., Yang, M., Gou, X., & Jorgenson, M. T. (2022). Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. Earth-Science Reviews, 230, 104042.

    Google Scholar 

  • Weaver, S. C., & Reisen, W. K. (2010). Present and future arboviral threats. Antiviral Research, 85(2), 328–345.

    CAS  Google Scholar 

  • Webb, L. B., Watterson, I., Bhend, J., Whetton, P. H., & Barlow, E. W. R. (2013). Global climate analogues for winegrowing regions in future periods: Projections of temperature and precipitation. Australian Journal of Grape and Wine Research, 19(3), 331–341.

    Google Scholar 

  • WHO. (2016). Anticipating emerging infectious disease epidemics: Meeting report of WHO informal consultation. World Health Organization (WHO) Press.

  • Wilke, A. B., Chase, C., Vasquez, C., Carvajal, A., Medina, J., Petrie, W. D., & Beier, J. C. (2019). Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Scientific Reports, 9(1), 1–11.

    Google Scholar 

  • Williams, P. C., Bartlett, A. W., Howard-Jones, A., McMullan, B., Khatami, A., Britton, P. N., & Marais, B. J. (2021). Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases. Journal of Paediatrics and Child Health, 57(11), 1811–1818.

    Google Scholar 

  • Wu, T., Perrings, C., Kinzig, A., Collins, J. P., Minteer, B. A., & Daszak, P. (2017). Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio, 46, 18–29.

    CAS  Google Scholar 

  • Wu, Z., Man, W., & Ren, Y. (2022). Influence of tree coverage and micro-topography on the thermal environment within and beyond a green space. Agricultural and Forest Meteorology, 316, 108846.

    Google Scholar 

  • Yang, D., He, Y., Wu, B., Deng, Y., Li, M., Yang, Q., Huang, L., Cao, Y., & Liu, Y. (2020). Drinking water and sanitation conditions are associated with the risk of malaria among children under five years old in sub-Saharan Africa: A logistic regression model analysis of national survey data. Journal of Advanced Research, 21, 1–13.

    Google Scholar 

  • Zhang, Y., Haseeb, M., Hossain, M. E., Hu, M., & Li, Z. (2023). Study on the coupling and coordination degree between urban tourism development and habitat environment in the Yangtze River Delta in China. Environmental Science and Pollution Research, 30(6), 14805–14820.

    Google Scholar 

  • Zhao, X., Thanapongtharm, W., Lawawirojwong, S., Wei, C., Tang, Y., Sun, X., Cui, L., Sattabongkot, J., & Kaewkungwal, J. (2020). Malaria risk map using spatial multi-criteria decision analysis along Yunnan border during the pre-elimination period. The American Journal of Tropical Medicine and Hygiene, 103(2), 793.

    Google Scholar 

  • Zhou, G., Zhou, X., Eldridge, D. J., Han, X., Song, Y., Liu, R., Zhou, L., He, Y., Du, Z., & Delgado Baquerizo, M. (2022). Temperature and rainfall patterns constrain the multidimensional rewilding of global forests. Advanced Science, 9(18), 2201144.

    Google Scholar 

Download references

Acknowledgements

The authors are also thankful to the Graduate School of Environmental Science, Hokkaido University, Japan; and the Grant-in-Aid for Scientific Research (C) grant no. 21K05664 facilitating the necessary logistic support for this study. We extend our sincere thanks to the three anonymous reviewers whose insightful feedback significantly improved the quality and content of this manuscript.

Funding

This work was partially supported by Grant-in-Aid for Scientific Research (C) grant no. 21K05664.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Sudha Suresh, Gowhar Meraj, and Ram Avtar designed the study and conducted a formal analysis. Sudha Suresh, Deepak Singh, Ankita Gupta, Asma Kouser, Inam Danish Khan, and Ram Avtar conducted the field work. Sudha Suresh, Tarun Yadav, and Pankaj Kumar processed data and interpreted the results. Ram Avtar is the mentor for the study and obtained the funding. All authors discussed the results and contributed to the writing and review of the final manuscript.

Corresponding author

Correspondence to Ram Avtar.

Ethics declarations

Ethical approval

All authors have read, understood, and complied as applicable with the statement on Ethical responsibilities of Authors.

Consent to participate

All subjects gave their informed consent for inclusion before they participated in the study.

Consent to publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Meraj, G., Kumar, P. et al. Interactions of urbanisation, climate variability, and infectious disease dynamics: insights from the Coimbatore district of Tamil Nadu. Environ Monit Assess 195, 1226 (2023). https://doi.org/10.1007/s10661-023-11856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11856-9

Keywords

Navigation