Skip to main content

Advertisement

Log in

Deployment of entropy information theory in the Indian Sundarban region using hydrogeochemical parameters and GIS for assessment of irrigation suitability

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The evaluation of irrigation suitability plays a crucial role for the socio-economic development of the society, especially in the region of Sundarban. For sustainable agricultural practices, groundwater quality must be suitable for irrigation; otherwise, it can degrade soil and diminish crop yield. The entropy information theory, several irrigational indices, multivariate statistics, GIS, and geostatistics are used in this work to evaluate the geographical distribution and quality of groundwater in the Indian Sundarban region. In total, 33 groundwater samples were collected in 2018 (April and May), and they were evaluated for major cations, anions, as well as other parameters like electrical conductivity (EC), soluble sodium percentage (SSP), potential salinity (PS), total dissolved solids (TDS), Kelly ratio (KR), sodium absorption ratio (SAR), permeability index (PI), residual sodium carbonate (RSC), magnesium hazard (MH), and residual sodium bicarbonate (RSBC). The overall trend of the principal cations and anions is in the sequence of Na+  ≥ Mg2+  ≥ Ca2+  ≥ K2+ and HCO3  ≥ Cl  ≥ NO3  ≥ SO42−  ≥ F, respectively, whereas the spatial variation of %Na, SAR, RSBC, and MH demonstrate very poor irrigation water quality, and spatial variation of KR, RSC, SSP, PI, and PS signifies that the irrigation water quality is excellent to good. In order to identify the specific association and potential source of the dissolved chemical in the groundwater, statistical techniques like correlation and principal component analysis were also employed. The hydrochemical facies indicates that mixed type makes up the bulk (51.51%) of the water samples. Following the Wilcox plot, more than 75% of the water samples are good to doubtful; however, by the US salinity hazard map, roughly 60.60% of the samples had high salinity (C3-S1 zone). The EWQII reports that no samples fall into the very good (no restriction) category, whereas 30.30%, 30.30%, and 39.40% of the sample wells record good (low restriction), average (moderate restriction), and poor (severe restriction) irrigation water quality, respectively. Based on this study, the bulk of the groundwater samples taken from the study area are unsuitable for cultivation. The findings of this study will also help decision-makers develop adequate future plans for irrigation and groundwater resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adimalla, N., Li, P., & Qian, H. (2019). Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment (HHRA). Human and Ecological Risk Assessment: An International Journal, 25, 1107–1124.

    CAS  Google Scholar 

  • Ahmed, S., Khurshid, S., Madan, R., Abu Amarah, B. A., & Naushad, M. (2020). Water quality assessment of shallow aquifer based on Canadian Council of Ministers of the environment index and its impact on irrigation of Mathura District, Uttar Pradesh. Journal of King Saud University - Science, 32, 1218–1225.

    Google Scholar 

  • Aldakheel, Y. Y. (2011). Assessing NDVI spatial pattern as related to irrigation and soil salinity management in Al-Hassa Oasis, Saudi Arabia. Journal of the Indian Society of Remote Sensing, 39, 171–180.

    Google Scholar 

  • Allison, M. A., Khan, S. R., Goodbred, S. L., Jr., & Kuehl, S. A. (2003). Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sedimentary Geology, 155(3–4), 317–342. https://doi.org/10.1016/S0037-0738(02)00185-9

    Article  CAS  Google Scholar 

  • Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat. Iran. Environmental Earth Sciences, 72, 3479–3490.

    CAS  Google Scholar 

  • Aravinthasamy, P., Karunanidhi, D., Subba Rao, N., Subramani, T., & Srinivasamoorthy, K. (2020). Irrigation risk assessment of groundwater in a non-perennial river basin of South India: Implication from irrigation water quality index (IWQI) and geographical information system (GIS) approaches. Arabian Journal of Geosciences, 13, 1–14.

    Google Scholar 

  • Aravinthasamy, P., Karunanidhi, D., Subramani, T., & Roy, P. D. (2021). Demarcation of groundwater quality domains using GIS for best agricultural practices in the drought-prone Shanmuganadhi River basin of South India. Environmental Science and Pollution Research, 28, 18423–18435.

    CAS  Google Scholar 

  • Avdullahi, S., Fejza, I., & Tmava, A. M. (2013). Evaluation of groundwater pollution using multivariate statistical analysis: A case study from Burimi area, Kosovo.

  • Ayers, R. S., &Westcot, D. W. (1985). Water quality for agriculture, irrigation and drainage (Paper No. 29). FAO, Rome.

  • Balasubramani, K., Rutharvel Murthy, K., Gomathi, M., & Kumaraswamy, K. (2020). Integrated assessment of groundwater resources in a semi-arid watershed of South India: Implications for irrigated agriculture. GeoJournal, 85, 1701–1723.

    Google Scholar 

  • Barua, S., Mukhopadhyay, B. P., & Bera, A. (2021). Hydrochemical assessment of groundwater for irrigation suitability in the alluvial aquifers of Dakshin Dinajpur district, West Bengal (p. 80). Environmental Earth Sciences.

    Google Scholar 

  • Bauder, T. A., Cardon, G. E., Waskam, R. M., & Davis, J. G. (2004). Irrigation water quality—Cooperative extension agriculture 506. Colorado State University.

    Google Scholar 

  • Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29, 2073–2089.

    Google Scholar 

  • Bhadra, T., Hazra, S., Sinha Ray, S. P., & Barman, B. C. (2020). Assessing the groundwater quality of the coastal aquifers of a vulnerable delta: A case study of the Sundarban Biosphere Reserve. India. Groundwater for Sustainable Development, 11, 100438.

    Google Scholar 

  • Bhunia, G. S., Keshavarzi, A., Shit, P. K., Omran, E. E., & Bagherzadeh, A. (2018). Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur. Iran. Applied Water Science, 8, 1–16.

    CAS  Google Scholar 

  • Bozdağ, A. (2014). Combining AHP with GIS for assessment of irrigation water quality in Çumra irrigation district (Konya), Central Anatolia, Turkey. Environmental Earth Sciences, 73, 8217–8236.

    Google Scholar 

  • Burman, D., Mahanta, K. K., Sarangi, S. K., Mandal, S., Maji, B., Mandal, U. K., ... & Sharma, D. K. (2015). Effect of groundwater use on groundwater salinity, piezometric level and boro rice yield in the Sundarbans of West Bengal. In Revitalizing the Ganges Coastal Zone: Turning Science into Policy and Practices Conference Proceedings. Colombo, Sri Lanka: CGIAR Challenge Program on Water and Food (CPWF). 600pp (p. 61).

  • Burman, D., Sarangi, S. K., Mandai, S., & Bandyopadhyay, B. K. (2009). Water quality of tube-wells used for irrigation during Rabi and Summer seasons in the coastal areas of Sundarbans, West Bengal. Journal of Indian Society of Coastal Agricultural Research, 27(2).

  • Cattell, R. B. (1966). Multivariate behavioral translator disclaimer the scree test for the number of factors. Multivariate Behav. Res., 1, 245–276. https://doi.org/10.1207/s15327906mbr0102

    Article  CAS  Google Scholar 

  • Central Ground Water Board of India (CGWB). (2018). Report of the ground water resource estimation committee. Ministry of Water Resources, Govt. of India. http://cgwb.gov.in/index.php/ground-water-resource-assessment-0

  • CGWB. (2006). Ground water information booklet: South 24 Parganas District, West Bengal. Central Ground Water Board, Govt. of India, p.16.

  • CGWB. (2016). Central Ground Water Board Ministry of Water Resources Government of India, Report.

  • Chidambaram, S., Anandhan, P., Prasanna, M. V., Srinivasamoorthy, K., & Vasanthavigar, M. (2012). Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arabian Journal of Geosciences, 6, 3451–3467. https://doi.org/10.1007/s12517-012-0589-3

    Article  CAS  Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Venkatramanan, S., Nepolian, M., Pradeep, K., Panda, B., Thivya, C., & Thilagavathi, R. (2022). Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environmental research, 111729 .

  • Chidambaram, S. M., Ramanathan, A., Prasanna, M.V., Lognatan, D., Narayanan, T., Srinivasamoorthy, K., & Anandhan, P. T. (2008). Study on the impact of tsunami on shallow groundwater from Portnova to Pumpuhar, using geoelectrical technique - South east coast of India.

  • Chow, V. T. (1964). Handbook of applied hydrology. McGraw-Hill.

    Google Scholar 

  • Coleman, J. M. (1969). Brahmaputra River: Channel processes and sedimentation. Sedimentary Geology, 3, 129–239.

    Google Scholar 

  • Das, S., Bhadra, T., & Hazra, S. (2015, December). Water for agriculture in a vulnerable delta: A case study of Indian Sundarban. In AGU Fall Meeting Abstracts, (Vol. 2015, pp. GC41F-1150).

  • Datta, P. S., & Tyagi, S. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Journal of Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: Fundamentals and applications to contamination. Lewis Publishers.

    Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology (p. 321). Wiley.

    Google Scholar 

  • Doneen, L. D. (1964). Notes on water quality in agriculture. Water science and Engineering University of California.

    Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69, 123–134. https://doi.org/10.1097/00010694-195002000-00004

    Article  CAS  Google Scholar 

  • FAO. (1985). Water quality for agriculture. Food and Agriculture Organization. http://www.fao.org/docrep/003/t0234e/T0234E01. htm#ch1.4. Accessed 21 Dec 2013.

  • Fetter, C. W. (1994). Applied hydrogeology (3rd ed., p. 310). Macmillan college publication.

    Google Scholar 

  • Foster, S. S., & Perry, C. (2010). Improving groundwater resource accounting in irrigated areas : A prerequisite for promoting sustainable use. Hydrogeology Journal, 18, 291–294.

    Google Scholar 

  • Foster, S. S. D. (1995). Groundwater for development: An overview of quality constraints. In H. Nash & G. J. H. McCall (Eds.), Groundwater quality (17th special report) (pp. 1–3). Chapman & Hall.

    Google Scholar 

  • Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., & Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of Cleaner Production, 260, 121006.

    CAS  Google Scholar 

  • Gao, Z., Liu, J., Feng, J., Wang, M., & Wu, G. (2019). Hydrogeochemical characteristics and the suitability of groundwater in the Alluvial-Diluvial Plain of Southwest Shandong Province, China. Water.

  • Gautam, S. K., Maharana, C., Sharma, D., Singh, A. P., Tripathi, J. K., & Singh, S. (2015). Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand State, India. Sustainability of Water Quality and Ecology, 6, 57–74.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms Controlling World Water Chemistry. Science, 170, 1088–1090.

    CAS  Google Scholar 

  • Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquatic Sciences, 68, 338–354.

    Google Scholar 

  • Gugulothu, S., Subbarao, N., Das, R., & Dhakate, R. (2022). Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India. Applied Water Science, 12, 1–13.

    Google Scholar 

  • Gupta, I. C. (1983). Concept of residual sodium carbonate in irrigation waters in relation to sodic hazard in irrigated soils. Current Agriculture Research Journal, 7, 97–113.

  • Halder, S., Kumar, P., Das, K., Dasgupta, R., & Mukherjee, A. (2021). Socio-hydrological approach to explore groundwater–human wellbeing nexus: Case study from Sundarbans. India. Water, 13, 1635.

    Google Scholar 

  • Hasan, M. S. U., & Rai, A. K. (2023a). Suitability of the Lower Ganga basin groundwater for irrigation, using hydrogeochemical parameters and land-use dynamics. Environmental Science and Pollution Research, 1–17.

  • Hasan, M. S. U. et al. (2023). Application of geostatistical and geospatial techniques for groundwater quality vulnerability assessment using hydrogeochemical parameters: A case study of NCT Delhi. In: Das, J., Bhattacharya, S.K. (eds) Monitoring and Managing Multi-hazards. GIScience and Geo-environmental Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-15377-8_7

  • Hasan, M. S. U., & Rai, A. K. (2023b). Suitability of the Lower Ganga basin groundwater for irrigation, using hydrogeochemical parameters and land-use dynamics. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-24708-9

    Article  Google Scholar 

  • Hasan, M. U., & Rai, A. K. (2020). Groundwater quality assessment in the Lower Ganga Basin using entropy information theory and GIS. Journal of Cleaner Production, 274, 123077.

    Google Scholar 

  • Hazra, S., Ghosh, T., DasGupta, R., & Sen, G. (2002). Sea level and associated changes in the Sundarbans. Science and Culture, 68(9/12), 309–321.

    Google Scholar 

  • Hossain, M. A., Miah, J. A. S., & Sultana, N. (2018). Climate induced vulnerability and food security: Coping strategies in the coastal area of Bangladesh. Pract. Geogr., 22(1), 1–2.

    Google Scholar 

  • Houatmia, F., Azouzi, R., Charef, A., & Bédir, M. (2016). Assessment of groundwater quality for irrigation and drinking purposes and identification of hydrogeochemical mechanisms evolution in Northeastern, Tunisia. Environmental Earth Sciences, 75, 1–17.

    CAS  Google Scholar 

  • Islam, A. R., Ahmed, N., Bodrud-Doza, M., & Chu, R. (2017). Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environmental Science and Pollution Research, 24, 26350–26374.

    CAS  Google Scholar 

  • Jasmin, I., & Mallikarjuna, P. (2015). Evaluation of groundwater suitability for irrigation in the Araniar River Basin, South India—A case study using Gis Approach. Irrigation and Drainage, 64, 600–608.

    Google Scholar 

  • Jayakumar, R., & Siraz, L. (1997). Factor analysis in hydrogeochemistry of coastal aquifers – a preliminary study. Environmental Geology, 31, 174–177.

    CAS  Google Scholar 

  • Johnson, C. C. (1979). Land application of water-an accident waiting to happen. Groundwater, 17(1), 69–72.

    Google Scholar 

  • Kamaraj, J., Sekar, S., Roy, P. D., Senapathi, V., Chung, S. Y., Perumal, M., & Nath, A. V. (2021). Groundwater pollution index (GPI) and GIS-based appraisal of groundwater quality for drinking and irrigation in coastal aquifers of Tiruchendur, South India. Environmental Science and Pollution Research, 28, 29056–29074.

    CAS  Google Scholar 

  • Kaur, T., Bhardwaj, R., & Arora, S. (2016). Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India. Applied Water Science, 7, 3301–3316.

    Google Scholar 

  • Kelly, W. P. (1963). Permissible composition and concentration of irrigated waters. Proceedings of the American Society of Civil Engineers, 66, 607–613.

    Google Scholar 

  • Khan, F., Krishnaraj, S., Raja, P., Selvaraj, G., & Cheelil, R. (2020). Impact of hydrogeochemical processes and its evolution in controlling groundwater chemistry along the east coast of Tamil Nadu and Puducherry, India. Environmental Science and Pollution Research, 28, 18567–18588.

    Google Scholar 

  • Khanoranga, & Khalid, S. (2019). An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration.

  • Kiy, M., & Arslan, H. (2021). Assessment of groundwater quality for irrigation and drinking using different quality indices and geostatistical methods in Çorum province (Turkey). Irrigation and Drainage, 70, 871–886.

    Google Scholar 

  • Kumar, P. J., & Augustine, C. M. (2021). Entropy-weighted water quality index (EWQI) modeling of groundwater quality and spatial mapping in Uppar Odai Sub-Basin, South India. Modeling Earth Systems and Environment, 8, 911–924.

    Google Scholar 

  • Langevin, C., Sanford, W., Polemio, M., & Povince, P. (2007). A new focus on groundwater-seawater interactions, Proceedings symposium HS1001at IUGG2007, July 2007. Perugia, Italy, IAHSPublications, 312, 3–10.

    CAS  Google Scholar 

  • Lee, H., & Chang, C. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews.

  • Li, P., Wu, J., & Qian, H. (2012). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environment and Earth Science, 69, 2211–2225. https://doi.org/10.1007/s12665-012-2049-5

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2010). Groundwater quality assessment based on entropy weighted osculating value method. International Journal of Environmental Sciences, 27(3), 31–34.

    Google Scholar 

  • Liu, C., Lin, K., & Kuo, Y. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313(1–3), 77–89.

    CAS  Google Scholar 

  • Mahammad, S., Islam, A., & Shit, P. K. (2022). Geospatial assessment of groundwater quality using entropy-based irrigation water quality index and heavy metal pollution indices. Environmental Science and Pollution Research, 1–24.

  • Margat, J., & Van der Gun, J. (2013). Groundwater around the world: a geographic synopsis. Crc Press

  • Milliman, J. D., Rutkowski, C., & Meybeck, M. (1995). River discharge in the sea: A Global River Index (GLORI). LOICZ Reports & Studies No. 2 (p. 125). Texel.

    Google Scholar 

  • Mitran, T., Mani, P. K., Basak, N., Mandal, B., & Mukhopadhyay, S. K. (2014). Soil fertility constraint assessment using spatial nutrient map at three selected villages of coastal Sundarbans. Journal of Soil Salinity and Water Quality, 6(1), 1–8.

    Google Scholar 

  • Mousazadeh, H., Mahmudy-Gharaie, M. H., Mosaedi, A., & Moussavi Harami, R. (2018). Hydrochemical assessment of surface and ground waters used for drinking and irrigation in Kardeh Dam Basin (NE Iran). Environmental Geochemistry and Health, 1–16.

  • Mukhopadhyay, B. P., Chakraborty, A., Bera, A., & Saha, R. K. (2022). Suitability assessment of groundwater quality for irrigational use in Sagardighi block, Murshidabad district, West Bengal. Applied Water Science, 12, 1–17.

    CAS  Google Scholar 

  • Ndoye, S., Fontaine, C., Gaye, C. B., & Razack, M. (2018). Groundwater quality and suitability for different uses in the Saloum Area of Senegal. Water.

  • Pazand, K., Khosravi, D., Ghaderi, M. R., & Rezvanianzadeh, M. R. (2018). Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundwater for Sustainable Development, 6, 245–254.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25, 914–928.

    Google Scholar 

  • Radstake, F. C., Attia, F. A., & Lennaerts, A. (1988). Forecasting groundwater suitability for irrigation — A case study in the Nile Valley. Egypt. Journal of Hydrology, 98, 103–119.

    CAS  Google Scholar 

  • Raghunath, H. M. (1987). Groundwater (p. 563). Wiley Eastern.

    Google Scholar 

  • Rahman, M. S., Saha, N., & Molla, A. (2014). Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environmental Earth Sciences, 71, 2293–2308.

    CAS  Google Scholar 

  • Rani, N., Satyanarayana, A. N., Bhaskaran, P. K., Rice, L., & Kantamaneni, K. (2020). Assessment of groundwater vulnerability using integrated remote sensing and GIS techniques for the West Bengal coast. India. Journal of Contaminant Hydrology, 238, 103760.

    Google Scholar 

  • Rao, N. V., Dinakar, A., Sravanthi, M., & Kumari, B. K. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28, 31941–31961.

    CAS  Google Scholar 

  • Rath, S. S., Panda, J., Annadurai, R., & Nanda, S. (2018). A study on land suitability for rice cultivation in Khordha District of Odisha (India) using remote sensing and GIS. Earth Systems and Environment, 2, 119–132.

    Google Scholar 

  • Ravikumar, P., Somashekar, R., & Angami, M. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environmental Monitoring and Assessment, 173, 459–487.

    CAS  Google Scholar 

  • Rehman, S., Hasan, Mohd. S. U., Rai, A. K., Rahaman, Md. H., Avtar, R., & Sajjad, H. (2022). Integrated approach for spatial flood susceptibility assessment in Bhagirathi sub-basin, India using entropy information theory and geospatial technology. Risk Analysis, 1– 16. https://doi.org/10.1111/risa.13887

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. 78(2), 154. LWW.

  • Roy, A., Keesari, T., Mohokar, H. V., Sinha, U. K., & Bitra, S. (2018). Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Applied Water Science, 8, 1–18.

    Google Scholar 

  • Ruiz, F. J., Gomis, V., & Blasco, P. (1990). Application of factor analysis to the hydrogeochemical study of a coastal aquifer. Journal of Hydrology, 119, 169–177.

    CAS  Google Scholar 

  • Rukhsana, & Molla, S. (2021). Investigating the suitability for rice cultivation using multi-criteria land evaluation in the Sundarban Region of South 24 Parganas District, West Bengal, India. Journal of the Indian Society of Remote Sensing, 50, 359–372.

    Google Scholar 

  • Saeid, S., Chizari, M., Sadighi, H., & Bijani, M. (2018). Assessment of agricultural groundwater users in Iran: A cultural environmental bias. Hydrogeology Journal, 26, 285–295. https://doi.org/10.1007/s10040-017-1634-9

    Article  Google Scholar 

  • Sahana, M., & Sajjad, H. (2017). Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: a case from Rudraprayag district, India. Journal of Mountain Science, 14(11), 2150–2167.

    Google Scholar 

  • Sahana, M., Hong, H., Ahmed, R., Patel, P. P., Bhakat, P., & Sajjad, H. (2019). Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environmental Earth Sciences, 78, 1–22.

    Google Scholar 

  • Sahana, M., Rehman, S., Paul, A. K., & Sajjad, H. (2021). Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geology, Ecology, and Landscapes, 5(1), 40–52.

    Google Scholar 

  • Sarkar, A., & Hassan, A. (2006). Water quality assessment of a groundwater basin in Bangladesh for irrigation use. Pakistan Journal of Biological Sciences, 9, 1677–1684.

    CAS  Google Scholar 

  • Sarkar, B., & Islam, A. (2021). Assessing the suitability of groundwater for irrigation in the light of natural forcing and anthropogenic influx: A study in the Gangetic West Bengal, India. Environmental Earth Sciences, 80, 1–19.

    Google Scholar 

  • Sarkar, B., Islam, A., & Majumder, A. (2021). Seawater intrusion into groundwater and its impact on irrigation and agriculture: Evidence from the coastal region of West Bengal (p. 101751). Regional Studies in Marine Science.

    Google Scholar 

  • Sastri, J. C. V. (1994). Groundwater chemical quality in river basins, Hydrogeochemical modeling. Lecture notes—Refresher course, School of Earth Sciences. BharathidasanUniversity, Tiruchirapalli, Tamil Nadu, India.

  • Schoeller H. (1965). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development, (pp 54–83).UNESCO.

  • Schoeller H. (1967). Geochemistry of groundwater. An international guide for research and practice (chap 15, pp 1–18). UNESCO.

  • Schoeller H. (1977). Geochemistry of groundwater. In Groundwater studies—An international guide for research and practice (Ch. 15, pp. 1–18). Paris:UNESCO.

  • Sekhri, S. (2013). Sustaining groundwater: Role of policy reforms in promoting conservation in India. Forthcoming India Policy Forum.

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Google Scholar 

  • Sharma, R., Jhala, Y. V., Qureshi, Q., Vattakaven, J., Gopal, R., & Nayak, K. (2010). Evaluating capture–recapture population and density estimation of tigers in a population with known parameters. Animal Conservation, 13.

  • Shyu, G., Cheng, B., Chiang, C. T., Yao, P., & Chang, T. (2011). Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. International Journal of Environmental Research and Public Health, 8, 1084–1109.

    CAS  Google Scholar 

  • Si, S. K. (2019). Study on quality - related constraints for drinking and irrigation in ground water of Sundarbans. Journal of the Indian Society of Coastal Agricultural Research, 37(1), 37–45.

    Google Scholar 

  • Singh, J., Singh, H., Singh, S., & Bajwa, B. S. (2009). Estimation of uranium and radon concentration in some drinking water samples of Upper Siwaliks, India. Environmental Monitoring and Assessment, 154, 15–22.

    CAS  Google Scholar 

  • Singh, K. R., Goswami, A. P., Kalamdhad, A. S., & Kumar, B. (2019). Development of irrigation water quality index incorporating information entropy. Environment, Development and Sustainability, 22, 3119–3132.

    Google Scholar 

  • Singh, S., Raju, N. J., & Ramakrishna, C. (2015). Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi Region, Uttar Pradesh, India. Journal of Water Resource and Protection, 07, 572–587.

    Google Scholar 

  • Sinha Roy, S. P. (2010). Status of ground water condition in Sundarban area, North and South 24 Parganas District, West Bengal. WWF-India.

  • Sinha Roy, S. P. (2014). Studies on the impact of global warming on the ground water resources and to develop strategies for fresh and sustainable drinking water supply of Sundarban area including Sagar Islands. Centre for Groundwater Studies, Kolkata.

  • Sivakarun, N., Udayaganesan, P., Chidambaram, S. M., Venkatramanan, S., Prasanna, M. V., Pradeep, K., & Panda, B. (2020). Factors determining the hydrogeochemical processes occurring in shallow groundwater of coastal alluvial aquifer, India.

  • Subba Rao, N. (2018). Groundwater quality from a part of Prakasam District, Andhra Pradesh, India. Applied Water Science, 8, 1–18.

    CAS  Google Scholar 

  • Subba Rao, N., Dinakar, A., Kumari, B. K., Karunanidhi, D., & Kamalesh, T. (2021). Seasonal and spatial variation of groundwater quality vulnerable zones of Yellareddygudem Watershed, Nalgonda District, Telangana State, India. Archives of Environmental Contamination and Toxicology, 80, 11–30.

    CAS  Google Scholar 

  • Suhag, R. (2016). Overview of ground water in India. PRS.

  • Sutradhar, S., & Mondal, P. (2021). Groundwater suitability assessment based on water quality index and hydrochemical characterization of Suri Sadar Sub-division. West Bengal. Ecol. Informatics, 64, 101335.

    Google Scholar 

  • Sys, C., Van Ranst, E., & Debaveye, J. (1993) Land evaluation. Part III: Crop requirements. Agric. Pub. No. 7, General Administration for Development Cooperation, Brussels.

  • Tanvir Rahman, M. A., Saadat, A. H., Islam, M. S., Al-Mansur, M. A., & Ahmed, S. (2014). Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Applied Water Science, 7, 233–243.

    Google Scholar 

  • Thapa, R., Gupta, S., & Kaur, H. (2020). Introducing an irrigation water quality index (IWQI) based on the case study of the Dwarka River basin, Birbhum, West Bengal (p. 6). Sustainable Water Resources Management.

    Google Scholar 

  • Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2017). Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Applied Water Science, 7, 4117–4131.

    Google Scholar 

  • Thilagavathi, R., Chidambaram, S. M., Thivya, C., Prasanna, M. V., Keesari, T., & Pethaperumal, S. (2017). Assessment of groundwater chemistry in layered coastal aquifers using multivariate statistical analysis. Sustainable Water Resources Management, 3, 55–69.

    Google Scholar 

  • Todd, D. K. (1959). Groundwater hydrology. (p. 535). New York, Willey.

  • Todd, D. K. (1980). Groundwater Hydrology (2nd ed., p. 256p). John Willey and Sons.

    Google Scholar 

  • USSL. (1954). Diagnosis and improvement of saline and alkali soils, United States Department of Agriculture, Agricultural handbook, No. 60, Washington D. C, 147p.

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S. M., Anandhan, P. T., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171, 595–609.

    CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Rajesh, R., Lee, S. Y., Ramkumar, T., & Prasanna, M. V. (2015). Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: A case study of Dalcheon in Ulsan City, Korea. Environmental Science and Pollution Research, 22, 11209–11223.

    CAS  Google Scholar 

  • Voudouris, K. N., Lambrakis, N., Papatheothorou, G., & Daskalaki, P. (1997). An application of factor analysis for the study of the hydrogeological conditions in Plio-Pleistocene aquifers of NW Achaia (NW peloponnesus, Greece). Mathematical Geology, 29, 43–59.

    CAS  Google Scholar 

  • Wilcox, L. (1948). The quality of water for irrigation use (Technical Bulletin 1962). Washington DC, USA: United State Department of Agriculture.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. Agriculture circular 969. USDA, Washington, DC, 19.

  • Wu, Wu., & J., Li, P., and Qian, H. (2011). Groundwater quality in Jingyuan County, a semi-humid area in Northwest China. Journal of Chemistry, 8(2), 787–793.

    CAS  Google Scholar 

  • Zhang, W., Ma, L., Abuduwaili, J., Ge, Y., Issanova, G., & Saparov, G. (2019) Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan. Environmental Monitoring and Assessment, 191, 572. [CrossRef] [PubMed].

  • Zohary, D., & Hopf, M. (2000). Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley (No. Ed. 3). Oxford university press.

  • Zulu, G., Toyota, M., & Misawa, S. (1996). Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem. Agricultural Water Management, 31, 269–283.

    Google Scholar 

Download references

Acknowledgements

The first author sincerely acknowledges the Indian Council of Social Science Research (ICSSR) for Ph.D. financial support under file number RFD/2021-22/GEN/ENV/304.

Author information

Authors and Affiliations

Authors

Contributions

Sabir Hossain Molla: conceptual model, methodology, preparation of the original draft, statistical analysis, and software. Rukhsana: methodology, supervision, reviewing, and editing. Mohd Sayeed Ul Hasan: reviewing, guiding to prepare model, and editing.

Corresponding author

Correspondence to Rukhsana.

Ethics declarations

Ethical approval

This study does not need ethical approval since it is based on the secondary data.

Consent to participate

This article does not contain any studies with human participants performed by any of the authors.

Consent for publication

I, give my consent for the publication of identifiable details in this paper under this journal and article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molla, S.H., Rukhsana & Hasan, M.S.U. Deployment of entropy information theory in the Indian Sundarban region using hydrogeochemical parameters and GIS for assessment of irrigation suitability. Environ Monit Assess 195, 1227 (2023). https://doi.org/10.1007/s10661-023-11847-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11847-w

Keywords

Navigation