Skip to main content

Advertisement

Log in

Ca/Na concentration-constrained variations of dissolved organic matter leaching from groundwater-irrigation area soil in North China Plain

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigates the quantity and quality variations of dissolved organic matter (DOM) leaching from the soil in groundwater irrigation area of the North China Plain, constrained by the concentration of Ca/Na. Soil samples with dominant humic-like (HLC) and protein-like (PLC) components were paired with parallel concentration gradients of Ca/Na extractants for equilibrium experiments. Fluorescence-PARAFAC, UV–visible spectroscopy, and multiple statistical analyses were combined for data analysis and interpretation. The results reveal that the primary DOM components remained dominant for specific soil sample, with a higher relative abundance of PLC (HLC) in Ca (Na) extract. HLC preferentially binds to soil phase in all extractions, while PLC is readily released into the solution. However, Ca inhibits HLC desorption and promotes PLC release more significantly than Na, as indicated by stronger ion/proton reaction (IPR) and electrostatic effect (ESE). The strongest IPR and ESE are seen in the HLC-dominated DOM extracted with Ca, suggesting a condition where Ca bridges to HLC and forms total dissolved organic carbon (DOC) that decreases. In contrast, Na extraction exhibits only a weaker ESE that is offset by soil-contained HLC and exchangeable Ca, resulting in subtle DOC decrease. The trends in leaching of HLC and PLC are self-dependent, and the level of variation in either component correlates with the increasing concentration of specific cations present. These findings underscore the crucial role of soil organic matter (SOM) composition and its interaction with leaching cations in soil management in large-scale groundwater irrigation areas, where SOM quality and groundwater chemistry vary.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data used in generating this work are available from the authors upon request.

References

  • Abdel-Satar, A. M., Al-Khabbas, M. H., Alahmad, W. R., Yousef, W. M., Alsomadi, R. H., & Iqbal, T. (2017). Quality assessment of groundwater and agricultural soil in Hail region, Saudi Arabia. The Egyptian Journal of Aquatic Research, 43(1), 55–64. https://doi.org/10.1016/j.ejar.2016.12.004

    Article  Google Scholar 

  • Al-Ahmadi, M. E. (2013). Groundwater quality assessment in Wadi Fayd, Western Saudi Arabia. Arabian Journal of Geosciences, 6(1), 247–258. https://doi.org/10.1007/s12517-011-0337-0

    Article  CAS  Google Scholar 

  • Albertina, D., & Siby, K. (2022). Characterization of colored dissolved organic matter along the western continental shelf of India during the seasonal hypoxia. Estuarine, Coastal and Shelf Science, 265. https://doi.org/10.1016/j.ecss.2021.107714

  • Asmala, E., Haraguchi, L., Markager, S., Massicotte, P., Riemann, B., Staehr, P. A., & Carstensen, J. (2018). Eutrophication leads to accumulation of recalcitrant autochthonous organic matter in coastal environment. Global Biogeochemical Cycles, 32(11), 1673–1687. https://doi.org/10.1029/2017gb005848

    Article  CAS  Google Scholar 

  • Bui, E., Krogh, L., Lavado, R. S., Nachtergaele, F., Toth, P., & Fitzpatrick, R. (2018). Sodic soils. Distribution, properties, management and environmental consequences. In (pp. 19–34).

  • Chi, C.-M., Zhao, C.-W., Sun, X.-J., & Wang, Z.-C. (2011). Estimating exchangeable sodium percentage from sodium adsorption ratio of salt-affected soil in the Songnen Plain of Northeast China. Pedosphere, 21(2), 271–276. https://doi.org/10.1016/S1002-0160(11)60127-6

    Article  Google Scholar 

  • Chorom, M., & Rengasamy, P. (1995). Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. European Journal of Soil Science, 46(4), 657–665. https://doi.org/10.1111/j.1365-2389.1995.tb01362.x

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346. Retrieved from https://doi.org/10.1016/0304-4203(95)00062-3

  • Dong, H., & Lo, I. M. C. (2013). Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Water Research, 47(7), 2489–2496. https://doi.org/10.1016/j.watres.2013.02.022

    Article  CAS  Google Scholar 

  • Dos Santos, S. R., Schellekens, J., da Silva, W. T. L., Buurman, P., Boim, A. G. F., & Vidal-Torrado, P. (2022). Selective sorption and desorption of DOM in podzol horizons — FTIR and Py-GC/MS of leachates from a column experiment. Science of The Total Environment, 826, 154144. https://doi.org/10.1016/j.scitotenv.2022.154144

  • Durce, D., Maes, N., Bruggeman, C., & Van Ravestyn, L. (2016). Alteration of the molecular-size-distribution of Boom Clay dissolved organic matter induced by Na+ and Ca2+. Journal of Contaminant Hydrology, 185–186, 14–27. https://doi.org/10.1016/j.jconhyd.2015.12.001

    Article  CAS  Google Scholar 

  • Fang, Q., Lu, A., Hanlie, H., Kuzyakov, Y., Zhao, L., Olshansky, Y., & Chorover, J. (2023). Mineral weathering is linked to microbial priming in the critical zone. Nature Communications, 14. https://doi.org/10.1038/s41467-022-35671-x

  • Gu, W., Huang, S., Lei, S., Yue, J., Su, Z., & Si, F. (2019). Quantity and quality variations of dissolved organic matter (DOM) in column leaching process from agricultural soil: Hydrochemical effects and DOM fractionation. Science of the Total Environment, 691, 407–416. https://doi.org/10.1016/j.scitotenv.2019.07.120

    Article  CAS  Google Scholar 

  • Gumidyala, S., Ruess, P. J., Konar, M., Marston, L., Dalin, C., & Wada, Y. (2020). Groundwater depletion embedded in domestic transfers and international exports of the United States. Water Resources Research, 56(2). https://doi.org/10.1029/2019WR024986

  • Guo, X., Hui, W., Shi, J., & Wang, W. (2022). Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland. North China Plain. Acta Geologica Sinica, 96(02), 656–672. https://doi.org/10.19762/j.cnki.dizhixuebao.2021061

    Article  Google Scholar 

  • He, W., & Hur, J. (2015). Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter. Water Research, 83, 217–226. https://doi.org/10.1016/j.watres.2015.06.044

  • Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. W. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53. https://doi.org/10.4319/lo.2008.53.3.0955

  • Hu, S., Cui, K., Chen, Y., & Hassan, M. (2022). Comprehensive study of the occurrence and characteristics of organic matter, nitrogen, and phosphorus in sediments and riparian soils of a large drinking water reservoir. Environmental Monitoring and Assessment, 195(1), 194. https://doi.org/10.1007/s10661-022-10798-y

    Article  CAS  Google Scholar 

  • Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., & Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6), 706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002

    Article  CAS  Google Scholar 

  • Jiu-ming, Z., Bao-ku, Z., Dan, W., Feng-qin, C., Xiao-yu, H., Liang, J., & En-jun, K. (2018). Spectroscopic characteristics of HA structure in black soil with organic and inorganic fertilizer. Spectrosc Spect Anal, 39(03). http://www.gpxygpfx.com/EN/Y2020/V40/I07/2194

  • Kerr, J. G., & Eimers, M. C. (2012). Decreasing soil water Ca2+ reduces DOC adsorption in mineral soils: Implications for long-term DOC trends in an upland forested catchment in southern Ontario, Canada. Science of the Total Environment, 427–428, 298–307. https://doi.org/10.1016/j.scitotenv.2012.04.016

    Article  CAS  Google Scholar 

  • Kothawala, D. N., Moore, T. R., & Hendershot, W. H. (2009). Soil properties controlling the adsorption of dissolved organic carbon to mineral soils. Soil Science Society of America Journal, 73(6), 1831–1842. https://doi.org/10.2136/sssaj2008.0254

    Article  CAS  Google Scholar 

  • Kothawala, D. N., Roehm, C., Blodau, C., & Moore, T. R. (2012). Selective adsorption of dissolved organic matter to mineral soils. Geoderma, 189–190, 334–342. https://doi.org/10.1016/j.geoderma.2012.07.001

    Article  CAS  Google Scholar 

  • Kozak, C., Leithold, J., & do Prado, L. L., Knapik, H. G., de Rodrigues Azevedo, J. C., Braga, S. M., & Fernandes, C. V. S. (2021). Adaptive monitoring approach to assess dissolved organic matter dynamics during rainfall events. Environmental Monitoring and Assessment, 193(7), 423. https://doi.org/10.1007/s10661-021-09183-y

    Article  CAS  Google Scholar 

  • Liang, C., Hang, L., Fei, L., Song, J., & Tao, Y. (2018). Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China. Ground water, 56(3). https://doi.org/10.1111/gwat.12596

  • Ma, L., Lv, X., Cao, N., Wang, Z., Zhou, Z., & Meng, Y. (2021). Alterations of soil labile organic carbon fractions and biological properties under different residue-management methods with equivalent carbon input. Applied Soil Ecology, 161. https://doi.org/10.1016/j.apsoil.2020.103821

  • Massicotte, P., & Frenette, J. (2011). Spatial connectivity in a large river system: Resolving the sources and fate of dissolved organic matter. Ecological Applications: A Publication of the Ecological Society of America, 217, 2600–2617. https://doi.org/10.1890/10-1475.1

    Article  Google Scholar 

  • McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J., & Baker, A. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 11(1), 1279. https://doi.org/10.1038/s41467-020-14946-1

    Article  CAS  Google Scholar 

  • McDonough, L. K., Andersen, M. S., et al. (2022). A new conceptual framework for the transformation of groundwater dissolved organic matter. Nature Communications, 13, 2153. https://doi.org/10.1038/s41467-022-29711-9

    Article  CAS  Google Scholar 

  • Monger, H. C., Kraimer, R. A., Khresat, S. E., Cole, D. R., Wang, X., & Wang, J. (2015). Sequestration of inorganic carbon in soil and groundwater. Geology 43(5), 375–378. https://doi.org/10.2136/sssaj2004.6900

  • Moore, T., & Turunen, J. (2004). Carbon accumulation and storage in mineral subsoil beneath peat. Soil Science Society of America Journal - SSSAJ, 68, 690–696. https://doi.org/10.2136/sssaj2004.6900

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557–6566. https://doi.org/10.1039/C3AY41160E

    Article  CAS  Google Scholar 

  • Münch, J. ‐M., Totsche, K. U., & Kaiser, K. (2002). Physicochemical factors controlling the release of dissolved organic carbon from columns of forest subsoils. European Journal of Soil Science, 53(2). https://doi.org/10.1046/j.1365-2389.2002.00439.x

  • Quan, X., Liu, J., & Zhou, J. (2019). Multiscale modeling and simulations of protein adsorption: Progresses and perspectives. Current Opinion in Colloid & Interface Science, 41, 74–85. https://doi.org/10.1016/j.cocis.2018.12.004

    Article  CAS  Google Scholar 

  • Rashid, M. A., Buckley, D. E., & Robertson, K. R. (1972). Interactions of a marine humic acid with clay minerals and a natural sediment. Geoderma, 8(1), 11–27. https://doi.org/10.1016/0016-7061(72)90029-8

    Article  CAS  Google Scholar 

  • Römkens, P. F. A. M., & Dolfing, J. (1998). Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environmental Science & Technology, 32(3), 363–369. https://doi.org/10.1021/es970437f

    Article  Google Scholar 

  • Schaumann, G. E. (2000). Effect of CaCl2 on the kinetics of dissolved organic matter release from a sandy soil. Journal of Plant Nutrition and Soil Science, 163, 523–529. https://doi.org/10.1002/1522-2624(200010)163:5%3c523

    Article  CAS  Google Scholar 

  • Setia, R., Rengasamy, P., & Marschner, P. (2013). Effect of mono- and divalent cations on sorption of water-extractable organic carbon and microbial activity. Biology and Fertility of Soils, 50. https://doi.org/10.1007/s00374-013-0888-1

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Doell, P., & Portmann, F. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth System Sciences, 14, 1863–1880. https://doi.org/10.5194/hess-14-1863-2010

    Article  Google Scholar 

  • Singh, S., D’Sa, E. J., & Swenson, E. M. (2010). Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). Science of the Total Environment, 408(16), 3211–3222. https://doi.org/10.1016/j.scitotenv.2010.03.044

    Article  CAS  Google Scholar 

  • Singh, S., Dash, P., Silwal, S., Feng, G., Adeli, A., & Moorhead, R. J. (2017). Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments. Environmental science and pollution research international, 24(16). https://doi.org/10.1007/s11356-017-8917-5

  • Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001

    Article  CAS  Google Scholar 

  • Su, Z., Huang, S., Gu, W., Si, F., & Lei, S. (2019). Spectroscopy, quality variations, and chemical release characteristics of dissolved organic matter extracted from soil of a wheat field at the North China Plain. Environmental Earth Sciences, 78(14). https://doi.org/10.1007/s12665-019-8423-9

  • Tang, J., Wang, W., Feng, J., Yang, L., Ruan, T., & Xu, Y. (2021). Urban green infrastructure features influence the type and chemical composition of soil dissolved organic matter. The Science of the total environment764, 144240. https://doi.org/10.1016/j.scitotenv.2020.144240

  • Wang, K., Li, P., He, C., Shi, Q., & He, D. (2021). Hydrologic heterogeneity induced variability of dissolved organic matter chemistry among tributaries of the Three Gorges Reservoir. Water Research, 201, 117358. https://doi.org/10.1016/j.watres.2021.117358

  • Wang, X., Liu, Z., Xiong, K., He, Q., Li, Y., & Li, K. (2022). Characteristics and controlling factors of soil dissolved organic matter in the rainy season after vegetation restoration in a karst drainage area, South China. CATENA, 217, 106483. https://doi.org/10.1016/j.catena.2022.106483

  • Xing, L., Guo, H., & Zhan, Y. (2013). Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. Journal of Asian Earth Sciences, 70–71, 250–264. https://doi.org/10.1016/j.jseaes.2013.03.017

    Article  Google Scholar 

  • Yang, H. -F., Meng, R. -F., Bao, X. -L., Cao, W. -G., Li, Z. -Y., & Xu, B. -Y. (2022). Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain. Journal of Groundwater Science and Engineering, 10(2), 113–127. https://doi.org/10.19637/j.cnki.2305-7068.2022.02.002

  • Yao, X., Zhang, Y., Zhu, G., Qin, B., Feng, L., Cai, L., & Gao, G. (2011). Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere, 82(2), 145–155. https://doi.org/10.1016/j.chemosphere.2010.10.049

    Article  CAS  Google Scholar 

  • Yin, C., Meng, F., Meng, Y., & Chen, G.-H. (2016). Differential ultraviolet–visible absorbance spectra for characterizing metal ions binding onto extracellular polymeric substances in different mixed microbial cultures. Chemosphere, 159, 267–274. https://doi.org/10.1016/j.chemosphere.2016.05.089

    Article  CAS  Google Scholar 

  • Zhang, N., Liu, J., Zhang, T., Teng, Y., Meng, Z., & Liu, F. (2023a). Sources and composition of sediment dissolved organic matter determine the ecological strategies of bacteria in rivers: Evidence, mechanism, and implications. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-023-03492-0

    Article  Google Scholar 

  • Zha, Y., Wang, Y., Liu, S., Liu, S., Yang, Y., Jiang, H., Zhang, Y., Qi, L., & Wang, H. (2018). Adsorption characteristics of organics in the effluent of ultra-short SRT wastewater treatment by single-walled, multi-walled, and graphitized multi-walled carbon nanotubes. Scientific Reports, 8(1), 17245. https://doi.org/10.1038/s41598-018-35374-8

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, X., Wang, M., & Qin, B. (2013). Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry, 55, 26–37. https://doi.org/10.1016/j.orggeochem.2012.11.007

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhen, Q., Ma, W., Jia, J., Li, P., & Zhang, X. (2023b). Dynamic responses of soil aggregate-associated organic carbon and nitrogen to different vegetation restoration patterns in an agro-pastoral ecotone in northern China. Ecological Engineering, 189, 106895. https://doi.org/10.1016/j.ecoleng.2023.106895

  • Zhou, Y., Shi, K., Zhang, Y., Jeppesen, E., Liu, X., Zhou, Q., & Zhu, G. (2017). Fluorescence peak integration ratio IC:IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter. Science of the Total Environment, 574, 1588–1598. https://doi.org/10.1016/j.scitotenv.2016.08.196

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Scientific Research Fund of Yangtze University for Doctoral Talents (8021003102), the Fundamental Research Funds of Chinese Academy of Geological Science (SK202103), and the Natural Science Foundation of Hebei Province (D2018504005).

Author information

Authors and Affiliations

Authors

Contributions

Shuangbing Huang: conceptualization, methodology, software, writing—review and editing. Chenfei Xuan: data curation, writing—original draft preparation, formal analysis. Yong Qian: resources. Zhunbing Xie: validation. Yang Jiang: supervision. Shenghua Liu: investigation.

Corresponding author

Correspondence to Shuangbing Huang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15002 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Xuan, C., Qian, Y. et al. Ca/Na concentration-constrained variations of dissolved organic matter leaching from groundwater-irrigation area soil in North China Plain. Environ Monit Assess 195, 1213 (2023). https://doi.org/10.1007/s10661-023-11839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11839-w

Keywords

Navigation