Skip to main content

Advertisement

Log in

Use of remote sensing techniques to assess water storage variations and flood-related inflows for the Hawizeh wetland

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

High spatial and temporal resolution remote sensing data are becoming readily available. This has made the use of remote sensing to monitor and quantify spatiotemporal changes in surface waters feasible and efficient. In this paper, remote sensing techniques based on spectral indices were used to assess the changes in submerged areas and water storage in the Hawizeh marsh (south of Iraq) during the 2019 flood. Two water indices, the Normalized Difference Water Index (NDWI) and Normalized Difference Moisture Index (NDMI), were used for this purpose. Water indices have been frequently utilized to detect water bodies because of their particular spectral properties in the visible and infrared spectrum. Non-measured flood-related flows into the marsh have also been estimated by applying the water balance approach. The accuracy assessment of the water areas extracted by the remote sensing indices showed an acceptable degree of reliability, which reflected positively on the water inflow calculations. As the Hawizeh is a transboundary marsh shared by Iraq and Iran, remote sensing techniques allowed for the estimation of difficult-to-measure inflows from the Iranian side. The results of the water balance revealed that the inflows from the Iranian side to the marsh during the 5 months of the flood made up approximately 41.2% of the total water volume entering the marsh. The study demonstrated the feasibility of using uncomplicated water extraction methods that depend on remote sensing data to monitor hydrological changes in the Hawizeh wetland that lack sufficient data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Raw data were generated at the Centre for Restoration of Iraqi Marshlands and Wetlands, CRIMW. On request, the corresponding author Wisam Alawadi will provide derived data that support the findings of this study.

References

  • Al-Ansari, N., & Knutsson, S. (2011). Possibilities of restoring the Iraqi marshes known as the Garden of Eden. In Water and climatechange in the MENA-Region: Adaptation, mitigation and best practices 28/04/2011-29/04/2011.

  • Al-Maliki, S., Ibrahim, T. I., Jakab, G., Masoudi, M., Makki, J. S., & Vekerdy, Z. (2022). An approach for monitoring and classifying marshlands using multispectral remote sensing imagery in arid and semi-arid regions. Water, 14(10), 1523.

    Article  Google Scholar 

  • Al-Nasrawi, A. K., Fuentes, I., & Al-Shammari, D. (2021). Changes in Mesopotamian wetlands: Investigations using diverse remote sensing datasets. Wetlands, 41, 1–17.

    Article  Google Scholar 

  • Albarakat, R., & Lakshmi, V. (2019). Comparison of normalized difference vegetation index derived from Landsat, MODIS, and AVHRR for the Mesopotamian marshes between 2002 and 2018. Remote Sensing, 11(10), 1245.

    Article  Google Scholar 

  • Albarakat, R., Lakshmi, V., & Tucker, C. J. (2018). Using satellite remote sensing to study the impact of climate and anthropogenic changes in the Mesopotamian marshlands, Iraq. Remote Sensing, 10(10), 1524.

    Article  Google Scholar 

  • Alwan, I. A., & Aziz, N. A. (2021). An accuracy analysis comparison of supervised classification methods for mapping land cover using Sentinel 2 images in the Al‑Hawizeh marsh area, southern Iraq. Geomatics and Environmental Engineering, 15(1).

  • Amani, M., Kakooei, M., Ghorbanian, A., Warren, R., Mahdavi, S., Brisco, B., & Post, R. (2022). Forty years of wetland status and trends analyses in the Great Lakes using Landsat archive imagery and Google Earth Engine. Remote Sensing, 14(15), 3778.

    Article  Google Scholar 

  • Ashok, A., Rani, H. P., & Jayakumar, K. V. (2021). Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery. Remote Sensing Applications: Society and Environment, 23, 100547.

    Article  Google Scholar 

  • Ashtekar, A. S., Mohammed-Aslam, M. A., & Moosvi, A. R. (2019). Utility of normalized difference water index and GIS for mapping surface water dynamics in sub-upper Krishna Basin. Journal of the Indian Society of Remote Sensing, 47(8), 1431–1442.

    Article  Google Scholar 

  • Battaglia, M. J., Banks, S., Behnamian, A., Bourgeau-Chavez, L., Brisco, B., Corcoran, J., Chen, Z., Huberty, B., Klassen, J., Knight, J., Morin, P., Murnaghan, K., Pelletier, K., & White, L. (2021). Multi-source eo for dynamic wetland mapping and monitoring in the Great Lakes basin. Remote Sensing, 13(4), 599.

    Article  Google Scholar 

  • Brakenridge, R., & Anderson, E. (2006). MODIS-based flood detection, mapping and measurement: The potential for operational hydrological applications. In Transboundary floods: reducing risks through flood management (pp. 1–12). Springer Netherlands.

  • Center for Restoration of Iraqi Marshes and wetlands, CRIMW. (2006). Study the rehabilitation of Al Hawizeh marsh ecological system.

  • Centre for Restoration of Iraqi Marshes and Wetlands, CRIMW. (2015). Environmental and hydrological impact of construction of an embankment in Hawizeh marshes along the border with Iran in Basrah and Missan governorates.

  • Centre for Restoration of Iraqi Marshes and Wetlands, CRIMW. (2020). Discharges and water levels at Kassara and Swaib (Unpublished data).

  • Chen, T., Song, C., Ke, L., Wang, J., Liu, K., & Wu, Q. (2021). Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. Journal of Hydrology, 593, 125781.

    Article  Google Scholar 

  • Daggupati, P., Srinivasan, R., Dile, Y. T., & Verma, D. (2017). Reconstructing the historical water regime of the contributing basins to the Hawizeh marsh: Implications of water control structures. Science of the Total Environment, 580, 832–845.

    Article  CAS  Google Scholar 

  • Di Vittorio, C. A., & Georgakakos, A. P. (2018). Land cover classification and wetland inundation mapping using MODIS. Remote Sensing of Environment, 204, 1–17.

    Article  Google Scholar 

  • Domenikiotis, C., Loukas, A., & Dalezios, N. R. (2003). The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods. Natural Hazards and Earth System Sciences, 3(1/2), 115–128.

    Article  Google Scholar 

  • Du, J., Kimball, J. S., Sheffield, J., Pan, M., Fisher, C. K., Beck, H. E., & Wood, E. F. (2021). Satellite flood inundation assessment and forecast using SMAP and landsat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6707–6715.

    Article  Google Scholar 

  • Du, Z., Linghu, B., Ling, F., Li, W., Tian, W., Wang, H., ... & Zhang, X. (2012). Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin. China. Journal of Applied Remote Sensing, 6(1), 063609–063609.

    Article  Google Scholar 

  • Elsahabi, M., Negm, A., & El Tahan, A. H. M. (2016). Performances evaluation of surface water areas extraction techniques using Landsat ETM+ data: Case study Aswan High Dam Lake (AHDL). Procedia Technology, 22, 1205–1212.

    Article  Google Scholar 

  • Farhadi, H., & Najafzadeh, M. (2021). Flood risk mapping by remote sensing data and random forest technique. Water, 13(21), 3115.

    Article  Google Scholar 

  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35.

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  • Gao, H. (2015). Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage. Wiley Interdisciplinary Reviews: Water, 2(2), 147–157.

    Article  Google Scholar 

  • Ghobadi, Y., Pradhan, B., Shafri, H. Z., bin Ahmad, N., & Kabiri, K. (2015). Spatio-temporal remotely sensed data for analysis of the shrinkage and shifting in the Al Hawizeh wetland. Environmental Monitoring and Assessment, 187(1), 1–17.

    Article  Google Scholar 

  • Ghofrani, Z., Sposito, V., & Faggian, R. (2019). Improving flood monitoring in rural areas using remote sensing. Water Practice and Technology, 14(1), 160–171.

    Article  Google Scholar 

  • Guo, Q., Pu, R., Li, J., & Cheng, J. (2017). A weighted normalized difference water index for water extraction using Landsat imagery. International Journal of Remote Sensing, 38(19), 5430–5445.

    Article  Google Scholar 

  • Hadeel, A., Jabbar, M., & Chen, X. (2011). Remote sensing and GIS application in the detection of environmental degradation indicators. Geo-Spatial Information Science, 14(1), 39–47.

    Article  Google Scholar 

  • Hammer, D. A., & Bastian, R. K. (2020). Wetlands ecosystems: Natural water purifiers?. In Constructed wetlands for wastewater treatment (pp. 5–19). CRC Press.

  • Hasab, H. A., Jawad, H. A., Dibs, H., Hussain, H. M., & Al-Ansari, N. (2020). Evaluation of water quality parameters in marshes zone southern of Iraq based on remote sensing and GIS techniques. Water, Air, & Soil Pollution, 231(4), 1–11.

    Article  Google Scholar 

  • Hason, M. M., Abbood, I. S., & aldeen Odaa, S. (2020). Land cover reflectance of Iraqi marshlands based on visible spectral multiband of satellite imagery. Results in Engineering, 8, 100167.

    Article  Google Scholar 

  • Herndon, K., Muench, R., Cherrington, E., & Griffin, R. (2020). An assessment of surface water detection methods for water resource management in the Nigerien Sahel. Sensors, 20(2), 431.

    Article  Google Scholar 

  • Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56(2), 333–360.

    Article  Google Scholar 

  • Kaplan, G., & Avdan, U. (2018). Monthly analysis of wetlands dynamics using remote sensing data. ISPRS International Journal of Geo-Information, 7(10), 411.

    Article  Google Scholar 

  • Khalid, H. W., Khalil, R. M. Z., & Qureshi, M. A. (2021). Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 619–634.

    Article  Google Scholar 

  • Khalifeh Soltanian, F., Abbasi, M., & Riyahi Bakhtyari, H. R. (2019). Flood monitoring using NDWI and mNDWI spectral indices: A case study of Aghqala flood-2019, Golestan Province, Iran. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 605–607.

    Article  Google Scholar 

  • Kleinherenbrink, M., Lindenbergh, R. C., & Ditmar, P. G. (2015). Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. Journal of Hydrology, 521, 119–131.

    Article  Google Scholar 

  • Kumar, G., & Singh, K. K. (2020). Mapping and monitoring the selected wetlands of Punjab, India, using geospatial techniques. Journal of the Indian Society of Remote Sensing, 48(4), 615–625.

    Article  Google Scholar 

  • Leauthaud, C., Belaud, G., Duvail, S., Moussa, R., Grünberger, O., & Albergel, J. (2013). Characterizing floods in the poorly gauged wetlands of the Tana River Delta, Kenya, using a water balance model and satellite data. Hydrology and Earth System Sciences, 17(8), 3059–3075.

    Article  Google Scholar 

  • Li, J., Meng, Y., Li, Y., Cui, Q., Yang, X., Tao, C., Wang, Z., Li, L., & Zhang, W. (2022). Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning. Journal of Hydrology, 612, 128202.

    Article  Google Scholar 

  • Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549.

    Article  Google Scholar 

  • Li, W., Qin, Y., Sun, Y., Huang, H., Ling, F., Tian, L., & Ding, Y. (2016). Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sensing Letters, 7(2), 121–130.

    Article  Google Scholar 

  • Liu, Z., Yao, Z., & Wang, R. (2016). Assessing methods of identifying open water bodies using Landsat 8 OLI imagery. Environmental Earth Sciences, 75(10), 1–13.

    Article  Google Scholar 

  • Lu, S., Jia, L., Zhang, L., Wei, Y., Baig, M. H. A., Zhai, Z., & Zhang, G. (2017). Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product. Remote Sensing Letters, 8(3), 224–233.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  • Medina, C. E., Gomez-Enri, J., Alonso, J. J., & Villares, P. (2008). Water level fluctuations derived from ENVISAT Radar Altimeter (RA-2) and in-situ measurements in a subtropical waterbody: Lake Izabal (Guatemala). Remote Sensing of Environment, 112(9), 3604–3617.

    Article  Google Scholar 

  • Mohammadi, A., Costelloe, J. F., & Ryu, D. (2017). Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains. Remote Sensing of Environment, 190, 70–82.

    Article  Google Scholar 

  • Moosa, H. (2018). Environmental peacebuilding in Iraq: Restoring the Iraqi Marshes and the ancient kahrez systems in the northern governorates. In Routledge handbook of environmental conflict and peacebuilding (pp. 188–209). Routledge.

  • Muhsin, I. J. (2011). Al-Hawizeh marsh monitoring method using remotely sensed images. Iraqi Journal of Science, 52(3), 381–387.

    Google Scholar 

  • Mui, A., He, Y., & Weng, Q. (2015). An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 109, 30–46.

    Article  Google Scholar 

  • Ogilvie, A., Belaud, G., Delenne, C., Bailly, J. S., Bader, J. C., Oleksiak, A., & Martin, D. (2015). Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data. Journal of Hydrology, 523, 368–383.

    Article  Google Scholar 

  • Qiu, J., Cao, B., Park, E., Yang, X., Zhang, W., & Tarolli, P. (2021). Flood monitoring in rural areas of the Pearl River Basin (China) using Sentinel-1 SAR. Remote Sensing, 13(7), 1384.

    Article  Google Scholar 

  • Rad, A. M., Kreitler, J., & Sadegh, M. (2021). Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, 140, 105030.

    Article  Google Scholar 

  • Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6(5), 4173–4189.

    Article  Google Scholar 

  • Rouibah, K., & Belabbas, M. (2022). Modeling and monitoring surface water dynamics in the context of climate changes using remote sensing data and techniques: Case of Ain Zada Dam (North-East Algeria). Arabian Journal of Geosciences, 15(9), 1–9.

    Article  Google Scholar 

  • Rubec, C. (2013). A wetland future for Iraq. Marsh Bulletin, 8(2), 114–130.

    Google Scholar 

  • Saghafi, M., Ahmadi, A., & Bigdeli, B. (2021). Sentinel-1 and Sentinel-2 data fusion system for surface water extraction. Journal of Applied Remote Sensing, 15(1), 014521–014521.

    Article  Google Scholar 

  • Sharma, V. K., Azad, R. K., Chowdary, V. M., & Jha, C. S. (2022). Delineation of frequently flooded areas using remote sensing: A case study in part of Indo-Gangetic basin. In Geospatial technologies for land and water resources management (pp. 505–530). Springer, Cham.

  • Singh, A., Seitz, F., & Schwatke, C. (2012). Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote Sensing of Environment, 123, 187–195.

    Article  Google Scholar 

  • Song, C., Huang, B., & Ke, L. (2013). Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 135, 25–35.

    Article  Google Scholar 

  • Thomas, R. F., Kingsford, R. T., Lu, Y., Cox, S. J., Sims, N. C., & Hunter, S. J. (2015). Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie marshes, using Landsat Thematic Mapper. Journal of Hydrology, 524, 194–213.

    Article  Google Scholar 

  • Tripathi, G., Pandey, A. C., Parida, B. R., & Kumar, A. (2020). Flood inundation mapping and impact assessment using multi-temporal optical and SAR satellite data: A case study of 2017 flood in Darbhanga district, Bihar, India. Water Resources Management, 34, 1871–1892.

    Article  Google Scholar 

  • UNEP. (2004). Azadegan Environmental Baseline Study, Iran.

  • Wang, C., Jia, M., Chen, N., & Wang, W. (2018). Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin. Remote Sensing, 10(10), 1635.

    Article  Google Scholar 

  • Wang, Y. (2021). Evaluation of lake wetland ecotourism resources based on remote sensing ecological index. Arabian Journal of Geosciences, 14(7), 1–8.

    Article  CAS  Google Scholar 

  • Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385–396.

    Article  Google Scholar 

  • Wu, G., & Liu, Y. (2016). Mapping dynamics of inundation patterns of two largest river-connected lakes in China: A comparative study. Remote Sensing, 8(7), 560.

    Article  Google Scholar 

  • Xing, L., & Niu, Z. (2019). Mapping and analyzing China’s wetlands using MODIS time series data. Wetlands Ecology and Management, 27, 693–710.

    Article  CAS  Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Article  Google Scholar 

  • Yang, J. (2020). Remote sensing for wetland indices. In Wetlands and habitats (pp. 225–231). CRC Press.

  • Yigit Avdan, Z., Kaplan, G., Goncu, S., & Avdan, U. (2019). Monitoring the water quality of small water bodies using high-resolution remote sensing data. ISPRS International Journal of Geo-Information, 8(12), 553.

    Article  Google Scholar 

  • Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., & Qin, Y. (2017). Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water, 9(4), 256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation and design of this research paper. Wisam Alawadi and Zahraa A. collected the data and performed the analysis and calculation. Wisam Alawadi wrote the main manuscript text, and Dina A. prepared the figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wisam A. Alawadi.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawadi, W.A., Raheem, Z.A.H.A. & Yaseen, D.A. Use of remote sensing techniques to assess water storage variations and flood-related inflows for the Hawizeh wetland. Environ Monit Assess 195, 1246 (2023). https://doi.org/10.1007/s10661-023-11838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11838-x

Keywords

Navigation