Skip to main content

Advertisement

Log in

Ecological monitoring of urban thermal field variance index and determining the surface urban heat island effects in Lahore, Pakistan

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lahore is the second major metropolitan city in Pakistan in terms of urban population and built-up area, making the city a more ideal place to form the surface urban heat island (SUHI) effects. In the last two decades, the considerable land-use conversion from a natural surface (vegetation) and permeable (waterbody) surface into an impervious (built-up area) surface has lead to an increase in land surface temperature (LST) in Lahore. The human thermal comfort (HTC) of the residents is also impacted by the higher LST. The present study uses multi-temporal Landsat (5&8) satellite imageries to examine the ecological and thermal conditions of Lahore between 2000 and 2020. The ecological and thermal conditions of Lahore are assessed by calculating the urban heat islands and UTFVI (urban thermal field variance index), based on LST data which quantitatively assessed the UHI effect and the quality of human life. The outcomes establish that the urban built-up area has increased by 18%, while urban vegetation, vacant land, and waterbody decreased by 13%, 4%, and 0.04%, respectively. In the last 20 years, the mean LST of the study region has risen by about 3.67 °C. The UHI intensity map shows intensification and a rise in surface temperature variation from 4.5 °C (2000) to 5.9 °C (2020). Furthermore, the finding shows that the ecological and thermal conditions are worse in construction sites, transition zones, and urban areas in comparison to nearby rural areas. The lower UTFVI was observed in dense vegetation cover areas while a hot spot of higher UTFVI was predominantly observed in the areas of transition zones and built-up area expansion. Those areas with higher hot spots are more vulnerable to the urban heat island effect. The main conclusions of this study are essential for educating city officials and urban planners in developing a sustainable urban land development plan to reduce urban heat island effects by investing in open green spaces for urban areas of cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets produced and examined for the present work are not generally accessible but are provided upon reasonable request to the corresponding author.

References

  • Abir, F. A., Ahmmed, S., Sarker, S. H., & Fahim, A. U. (2021). Thermal and ecological assessment based on land surface temperature and quantifying multivariate controlling factors in Bogura, Bangladesh. Heliyon, 7(9), e08012.

    Google Scholar 

  • Abir, F. A., & Saha, R. (2021). Assessment of land surface temperature and land cover variability during winter: Spatio-temporal analysis of Pabna municipality in Bangladesh. Environmental Challenges, 4, 100167.

    Google Scholar 

  • Ahmad, A., & Quegan, S. (2012). Analysis of maximum likelihood classification on multispectral data. Applied Mathematical Sciences, 6(129), 6425–6436.

    Google Scholar 

  • Ahmad, N., Waqas, T., Shafique, M., & ullah, I. (2022). The land surface temperature dynamics and its impact on land cover in district Peshawar, Khyber Pakhtunkhwa. International Journal of Environment and Geo-Informatics, 9(3), 97–107.

    Google Scholar 

  • Akhtar, M., Hao, Y., Gao, G., Gulzar, Q., Hussain, A., & Samie, A. (2020). Assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore. Pakistan. Regional Sustainability, 1(1), 37–47.

    Google Scholar 

  • Alcantara, C., Escoto, J., Blanco, A., Baloloy, A., Santos, J., & Ana, R. S. (2019). Geospatial assessment and modelling of urban heat islands in Quezon City, the Philippines using OLS and geographically weighted regression. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 85–92.

    Google Scholar 

  • Alfraihat, R., Mulugeta, G., & Gala, T. (2016). Ecological evaluation of urban heat island in Chicago City, USA. J. Atmos. Pollut, 4(1), 23–29.

    Google Scholar 

  • Almas, A. S., Rahim, C., Butt, M., & Shah, T. I. (2005). Metropolitan growth monitoring and land use classification using geospatial techniques. Paper presented at the Proceedings of International Workshop on Service and Application of Spatial Data Infrastructure, Hangzhou, China.

  • Alphan, H. (2003). Land-use change and urbanization of Adana. Turkey. Land Degradation & Development, 14(6), 575–586.

    Google Scholar 

  • Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12), 2606–2617.

    Google Scholar 

  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1–8.

    Google Scholar 

  • Baqa, M. F., Lu, L., Chen, F., Nawaz-ul-Huda, S., Pan, L., Tariq, A., & Li, Q. (2022). Characterizing spatiotemporal variations in the urban thermal environment related to land cover changes in Karachi, Pakistan, from 2000 to 2020. Remote Sensing, 14(9), 2164.

    Google Scholar 

  • Bhalli, M. N., & Ghaffar, A. (2015). Use of geospatial techniques in monitoring urban expansion and land use change analysis: A case of Lahore, Pakistan. Journal of Basic & Applied Sciences, 11, 265–273.

    Google Scholar 

  • Bhatti, S. S., Tripathi, N. K., Nitivattananon, V., Rana, I. A., & Mozumder, C. (2015). A multi-scale modelling approach for simulating urbanization in a metropolitan region. Habitat International, 50, 354–365.

    Google Scholar 

  • Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146.

    Google Scholar 

  • Choudhury, U., Singh, S. K., Kumar, A., Meraj, G., Kumar, P., & Kanga, S. (2023). Assessing land use/land cover changes and urban heat island intensification: A case study of Kamrup Metropolitan District, Northeast India (2000–2032). Earth, 4(3), 503–521.

    Google Scholar 

  • Corner, R. J., Dewan, A. M., & Chakma, S. (2014). Monitoring and prediction of land-use and land-cover (LULC) change Dhaka megacity (pp. 75–97). Springer.

    Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied GeograPhy, 29(3), 390–401.

    Google Scholar 

  • Dilawar, A., Chen, B., Trisurat, Y., Tuankrua, V., Arshad, A., Hussain, Y., & Sun, S. (2021). Spatiotemporal shifts in thermal climate in responses to urban cover changes: A-case analysis of major cities in Punjab, Pakistan. Geomatics, Natural Hazards and Risk, 12(1), 763–793.

    Google Scholar 

  • El Araby, M. (2002). Urban growth and environmental degradation: The case of Cairo, Egypt. Cities, 19(6), 389–400.

    Google Scholar 

  • Faqe Ibrahim, G. R. (2017). Urban land uses land cover changes and their effect on land surface temperature: A case study using Dohuk City in the Kurdistan Region of Iraq. Climate, 5(1), 13.

    Google Scholar 

  • Faridatul, M. I. (2017). Spatiotemporal effects of land use and river morphological change on the microclimate of Rajshahi metropolitan area. Journal of Geographic Information System, 9(04), 466.

    Google Scholar 

  • Fu, P., & Weng, Q. (2016). A time series analysis of urbanization-induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205–214.

    Google Scholar 

  • Gazi, M. A. A., & Mondal, I. (2018). Urban heat island and its effect on dweller of Kolkata metropolitan area using geospatial techniques. International Journal of Computer Sciences and Engineering, 6(10), 741–753.

    Google Scholar 

  • Gazi, M., Rahman, M., Uddin, M., & Rahman, F. (2021). Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. Geojournal, 86(5), 2119–2134.

    Google Scholar 

  • Gherraz, H., Guechi, I., & Alkama, D. (2020). Quantifying the effects of spatial patterns of green spaces on urban climate and urban heat island in a semi-arid climate. Bulletin de la Société Royale des Sciences de Liège.

  • Ghous, M., Khalida, K., Basit, A., & Hassan, J. (2015). Temporal analysis of urbanization and resulting local weather change: A case study of Lahore, Punjab. Pakistan. Sci. Int. (lahore), 27(2), 1281–1287.

    Google Scholar 

  • GOP. (2000). District census report of Lahore 1998. Population Census Organization, Statistics Division Islamabad: Govt. of Pakistan. Retrieved from http://www.pbscensus.gov.pk

  • GOP. (2017). Provisional summary results of 6th population and housing census 2017, Population Census Organization, Statistics Division Islamabad: Govt. of Pakistan, Retrieved from https://www.pbs.gov.pk/content/brief-census-2017

  • Giannini, M., Belfiore, O., Parente, C., & Santamaria, R. (2015). Land surface temperature from Landsat 5 TM images: Comparison of different methods using airborne thermal data. Journal of Engineering Science & Technology Review, 8(3).

  • Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667–678.

    Google Scholar 

  • Guha, S., Govil, H., & Mukherjee, S. (2017). Dynamic analysis and ecological evaluation of urban heat islands in Raipur City. India. Journal of Applied Remote Sensing, 11(3), 036020.

    Google Scholar 

  • Halder, B., Bandyopadhyay, J., & Banik, P. (2021). Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustainable Cities and Society, 74, 103186.

    Google Scholar 

  • Hishe, S., Gidey, E., Zenebe, A., Girma, A., Dikinya, O., Sebego, R., & Lyimo, J. (2023). Urban heat island and ecological condition modeling using thermal remote sensing in Tigray-Northern Ethiopia. Modeling Earth Systems and Environment, 2023, 1–15.

    Google Scholar 

  • Imran, H., Hossain, A., Shammas, M. I., Das, M. K., Islam, M. R., Rahman, K., & Almazroui, M. (2022). Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh. Geomatics, Natural Hazards and Risk, 13(1), 2283–2312.

    Google Scholar 

  • Jain, M., Dimri, A., & Niyogi, D. (2017). Land-air interactions over urban-rural transects using satellite observations: Analysis over Delhi, India from 1991–2016. Remote Sensing, 9(12), 1283.

    Google Scholar 

  • Joshi, J. P., & Bhatt, B. (2012). Estimating temporal land surface temperature using remote sensing: A study of Vadodara urban area, Gujarat. International Journal of Geology, Earth and Environmental Sciences, 2(1), 123–130.

    Google Scholar 

  • Kafy, A. A., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., Khan, M. H. H., & Sattar, G. S. (2021a). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542.

    Google Scholar 

  • Kafy, A. A., Al Rakib, A., Akter, K. S., Jahir, D. M. A., Sikdar, M. S., Ashrafi, T. J., & Rahman, M. M. (2021b). Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges, 4, 100192.

    Google Scholar 

  • Kamal, N., Imran, M., & Tripati, N. K. (2017). Greening the urban environment using geospatial techniques, a case study of Bangkok, Thailand. Procedia Environmental Sciences, 37, 141–152.

    Google Scholar 

  • Kato, S., & Yamaguchi, Y. (2007). Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment, 110(1), 1–17.

    Google Scholar 

  • Khorrami, B., & Gunduz, O. (2020). Spatio-temporal interactions of surface urban heat island and its spectral indicators: A case study from Istanbul metropolitan area, Turkey. Environmental Monitoring and Assessment, 192, 386. https://doi.org/10.1007/s10661-020-08322-1

    Article  Google Scholar 

  • Liang, X., Ji, X., Guo, N., & Meng, L. (2021). Assessment of urban heat islands for land use based on urban planning: A case study in the main urban area of Xuzhou City, China. Environmental Earth Sciences, 80(8), 1–22.

    Google Scholar 

  • López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape and Urban Planning, 55(4), 271–285.

    Google Scholar 

  • Lyu, R., Zhang, J., Xu, M., & Li, J. (2018). Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy, 77, 163–173.

    Google Scholar 

  • Martin, P., Baudouin, Y., & Gachon, P. (2015). An alternative method to characterize the surface urban heat island. International Journal of Biometeorology, 59, 849–861.

    Google Scholar 

  • Maithani, S., Nautiyal, G., & Sharma, A. (2020). Investigating the effect of lockdown during COVID-19 on land surface temperature: Study of Dehradun city, India. Journal of the Indian Society of Remote Sensing, 48(9), 1297–1311.

    Google Scholar 

  • Malah, A., & Bahi, H. (2022). Integrated multivariate data analysis for urban sustainability assessment, a case study of Casablanca city. Sustainable Cities and Society, 86, 104100.

    Google Scholar 

  • Meshesha, T. W., Tripathi, S., & Khare, D. (2016). Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Modeling Earth Systems and Environment, 2(4), 1–12.

    Google Scholar 

  • Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat island–abilities and limitations. Building and Environment, 45(10), 2192–2201.

    Google Scholar 

  • Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538.

    Google Scholar 

  • Mokarram, M., Taripanah, F., & Pham, T. M. (2023). Investigating the effect of surface urban heat island on the trend of temperature changes. Advances in Space Research.

  • Mumtaz, F., Tao, Y., de Leeuw, G., Zhao, L., Fan, C., Elnashar, A., & Naeem, S. (2020). Modeling spatiotemporal land transformation and its associated impacts on land surface temperature (LST). Remote Sensing, 12(18), 2987.

    Google Scholar 

  • Naim, M. N. H., & Kafy, A. A. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4, 100107.

    Google Scholar 

  • Najafzadeh, F., Mohammadzadeh, A., Ghorbanian, A., & Jamali, S. (2021). Spatial and temporal analysis of surface urban heat island and thermal comfort using Landsat satellite images between 1989 and 2019: A case study in Tehran. Remote Sensing, 13(21), 4469.

    Google Scholar 

  • Nasar-u-Minallah, M. (2020). Exploring the relationship between land surface temperature and land use change in Lahore using Landsat data. Pakistan Journal of Scientific & Industrial Research Series a: Physical Sciences., 63A(3), 188–200.

    Google Scholar 

  • Nath, B., Wang, Z., Ge, Y., Islam, K. P., Singh, R., & Niu, Z. (2020). Land use and land cover change modeling and future potential landscape risk assessment using the Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information, 9(2), 134.

    Google Scholar 

  • Nguyen, T. M., Lin, T. H., & Chan, H. P. (2019). The environmental effects of urban development in Hanoi, Vietnam from satellite and meteorological observations from 1999–2016. Sustainability, 11(6), 1768.

    Google Scholar 

  • Oke, T. R. (1976). The distinction between canopy and boundary-layer heat islands. Atmosphere, 14, 268–277.

    Google Scholar 

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24.

    Google Scholar 

  • Oke, T. R. (1987). Boundary layer climates (2nd ed., p. 435). Cambridge: Routledge, Taylor and Francis Group.

    Google Scholar 

  • Orimoloye, I., Mazinyo, S., Nel, W., & Kalumba, A. (2018). Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: Human health implications for East London, South Africa. Environmental Earth Sciences, 77(3), 1–10.

    Google Scholar 

  • Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145.

    Google Scholar 

  • PMD. (2022). Pakistan Meteorological Department, Lahore (During 1980–2022). Retrieved January 3, 2022, from http://www.pmd.gov.pk/cdpc/extrems/lahore.htm

  • Polydoros, A., Mavrakou, T., & Cartalis, C. (2018). Quantifying the trends in land surface temperature and surface urban heat island intensity in Mediterranean cities in view of smart urbanization. Urban Science, 2(1), 16.

    Google Scholar 

  • Pontius, R. G., Jr., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429.

    Google Scholar 

  • Portela, C. I., Massi, K. G., Rodrigues, T., & Alcântara, E. (2020). Impact of urban and industrial features on land surface temperature: Evidences from satellite thermal indices. Sustainable Cities and Society, 56, 102100.

    Google Scholar 

  • Qin, Q., Zhang, N., Nan, P., & Chai, L. (2011). Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China. International Journal of Applied Earth Observation and Geoinformation, 13(4), 552–559.

    Google Scholar 

  • Qu, S., Wang, L., Lin, A., Yu, D., & Yuan, M. (2020). Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators, 108, 105724.

    Google Scholar 

  • Qureshi, J., Mahmood, S. A., Almas, A. S., Rafiquem, H. M., & Irshad, R. (2012). Monitoring spatiotemporal and micro-level climatic variations in Lahore and subrubs using satellite imagery and multi-source data. Journal of Faculty of Engineering & Technology, 19(1), 51–65.

    Google Scholar 

  • Ramzan, M., Saqib, Z. A., Hussain, E., Khan, J. A., Nazir, A., Dasti, M. Y. S., & Niazi, N. K. (2022). Remote sensing-based prediction of temporal changes in land surface temperature and land use-land cover (LULC) in urban environments. Land, 11(9), 1610.

    Google Scholar 

  • Renard, F., Alonso, L., Fitts, Y., Hadjiosif, A., & Comby, J. (2019). Evaluation of the effect of urban redevelopment on surface urban heat islands. Remote Sensing, 11(3), 299.

    Google Scholar 

  • Riaz, O., Ghaffar, A., & Butt, I. (2014). Modelling land use patterns of Lahore (Pakistan) using remote sensing and GIS. Global Journal of Science Frontier Research. Environment & Earth Science, 14(1), 24–30.

    Google Scholar 

  • Rooney, C., McMichael, A. J., Kovats, R. S., & Coleman, M. P. (1998). Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave. Journal of Epidemiology & Community Health, 52(8), 482–486.

    CAS  Google Scholar 

  • Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., & Kanawade, V. P. (2022). Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50(8), 1615–1640.

    Google Scholar 

  • Sahana, M., Ahmed, R., & Sajjad, H. (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Modeling Earth Systems and Environment, 2(2), 1–11.

    Google Scholar 

  • Sameen, M. I., & Al Kubaisy, M. A. (2014). Automatic surface temperature mapping in ArcGIS using Landsat-8 TIRs and ENVI tools, case study: Al Habbaniyah Lake. Journal of Environment and Earth Science, 4(12), 12–17.

    Google Scholar 

  • Sanchez, L., & Reames, T. G. (2019). Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban Forestry & Urban Greening, 44, 126331.

    Google Scholar 

  • Sejati, A. W., Buchori, I., & Rudiarto, I. (2019). The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 46, 101432.

    Google Scholar 

  • Sekertekin, A., Kutoglu, S. H., & Kaya, S. (2016). Evaluation of spatiotemporal variability in land surface temperature: A case study of Zonguldak, Turkey. Environmental Monitoring and Assessment, 188(1), 1–15.

    Google Scholar 

  • Shah, B., & Ghauri, B. (2015). Mapping urban heat island effect in comparison with the land use, and land cover of Lahore district. Pakistan Journal of Meteorology11(22).

  • Shakrullah, K., Shirazi, S., Mahmood, K., & Sajjad, S. (2021). Impact of land-use changes on the temperature variability: A case study of Lahore. Pakistan Journal of Science, 73(2).

  • Shalaby, A., Ghar, M. A., & Tateishi, R. (2004). Desertification impact assessment in Egypt using low-resolution satellite data and GIS. International Journal of Environmental Studies, 61(4), 375–383.

    Google Scholar 

  • Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35, 100751.

    Google Scholar 

  • Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing-based estimate. Sustainable Cities and Society, 32, 100–114.

    Google Scholar 

  • Shi, T., Huang, Y., Wang, H., Shi, C. E., & Yang, Y. J. (2015). Influence of urbanization on the thermal environment of the meteorological station: Satellite-observed evidence. Advances in Climate Change Research, 6(1), 7–15.

    Google Scholar 

  • Sobrino, J. A., & Irakulis, I. (2020). A methodology for comparing the surface urban heat island in selected urban agglomerations around the world from Sentinel-3 SLSTR data. Remote Sensing, 12(12), 2052.

    Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Google Scholar 

  • Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135.

    Google Scholar 

  • Tariq, A., & Shu, H. (2020). CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad. Pakistan. Remote SenSing, 12(20), 3402.

    Google Scholar 

  • Tesfamariam, S., Govindu, V., & Uncha, A. (2023). Spatio-temporal analysis of urban heat island (UHI) and its effect on urban ecology: The case of Mekelle city, Northern Ethiopia. Heliyon, 9(2).

  • Uddin, A. S. M. S., Khan, N., Islam, A. R. M., et al. (2022). Changes in urbanization and urban heat island effect in Dhaka city. Theoretical and Applied Climatology, 147, 891–907.

    Google Scholar 

  • Ullah, S., Tahir, A. A., Akbar, T. A., Hassan, Q. K., Dewan, A., Khan, A. J., & Khan, M. (2019). Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the Lower Himalayan Region. Sustainability, 11(19), 5492.

    Google Scholar 

  • Ullah, N., Siddique, M. A., Ding, M., Grigoryan, S., Zhang, T., & Hu, Y. (2022). Spatiotemporal impact of urbanization on urban heat island and urban thermal field variance index of Tianjin City, China. Buildings, 12(4), 399.

    Google Scholar 

  • USGS. (2017). Landsat 8 OLI and TIRS calibration notices [WWW Document]. URL: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-caliBration-notices. (Accessed 5 October 2021).

  • USGS. (2019). Landsat 7 (L7) data users handbook. Department of the Interior U.S. Geological Survey 151.

  • United Nations. (2018). The world’s cities in 2018. In The world’s cities in 2018 - Data booklet (ST/ESA/ SER.A/417).

  • Venter, Z. S., Brousse, O., Esau, I., & Meier, F. (2020). Hyper local mapping of urban air temperature using remote sensing and crowd sourced weather data. Remote Sensing of Environment, 242, 111791.

    Google Scholar 

  • Verma, P., Singh, P., Singh, R., & Raghubanshi, A. S. (Eds.). (2020). Urban ecology: emerging patterns and social-ecological systems. Elsevier.

  • Voogt, J. (2007). How researchers measure urban heat islands. Urban heat island webcasts and conference. United States Environmental Protection Agency (EPA).

    Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.

    Google Scholar 

  • Wemegah, C. S., Yamba, E. I., Aryee, J. N., Sam, F., & Amekudzi, L. K. (2020). Assessment of urban heat island warming in the greater Accra region. Scientific African, 8, e00426.

    Google Scholar 

  • Xiong, Y., & Chen, F. (2017). Correlation analysis between temperatures from Landsat thermal infrared retrievals and synchronous weather observations in Shenzhen, China. Remote Sensing Applications: Society and Environment, 7, 40–48.

    Google Scholar 

  • Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Google Scholar 

  • Yeboah, F., Awotwi, A., Forkuo, E. K., & Kumi, M. (2017). Assessing the land use and land cover changes due to urban growth in Accra, Ghana. Journal of Basic and Applied Research International, 22(2), 43–50.

    Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Google Scholar 

  • Zhang, Y., Yu, T., Gu, X., Zhang, Y. X., & Chen, L. F. (2006). Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect. Journal of Remote Sensing Beijing, 10(5), 789.

    Google Scholar 

  • Zhang, X., Zhong, T., Feng, X., & Wang, K. (2009). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 30, 2105–2118.

    Google Scholar 

  • Zhang, G., & He, B. J. (2021). Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban Forestry & Urban Greening, 58, 126992.

    Google Scholar 

  • Zhao, H., & Chen, X. (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Paper presented at the International Geoscience and remote sensing symposium.

  • Zia, S., Shirazi, S. A., Bhalli, M. N., & Alam, R. (2014). Temporal analysis of temperature trends in the metropolitan area of Lahore, Pakistan. Pakistan Journal of Science, 66(1), 83–87.

    Google Scholar 

Download references

Acknowledgements

The USGS is appreciated by the authors for allowing free downloads of the Landsat data. We also appreciate the reviewers’ and the editor’s insightful remarks and ideas.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Nasar-u-Minallah led the conceptualization, methodology, and data analysis; conducted the overall analysis; and wrote the manuscript. Dagmar Haase supervised the research and provide resources, and Salman Qureshi provided technical inputs for the research and reviewed the paper. Sahar Zia provide help during the map analysis and also edited and review the article. Munazza Fatima reviews and edits the article.

Corresponding author

Correspondence to Muhammad Nasar-u-Minallah.

Ethics declarations

Ethics approval

The statement on the “Ethical Responsibilities of Authors” has been read, understood, and followed by all authors as necessary.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasar-u-Minallah, M., Haase, D., Qureshi, S. et al. Ecological monitoring of urban thermal field variance index and determining the surface urban heat island effects in Lahore, Pakistan. Environ Monit Assess 195, 1212 (2023). https://doi.org/10.1007/s10661-023-11799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11799-1

Keywords

Navigation