Skip to main content

Advertisement

Log in

Monitoring of airborne fungi during the second wave of COVID-19 in selected wards of the referral university hospital in southeastern Iran

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microbiological monitoring of the air hospital is essential for prevention and control, due to the possible airborne route of infection transmission, especially in high-risk wards. This study aimed to monitor the airborne fungi during the second wave of the COVID-19 pandemic in selected wards of the biggest university educational hospital in Kerman, southeastern Iran. This study was conducted in 11 different wards, separated into the patient room and nursing station, of the Afzalipour hospital from May to August 2021. Fungal isolates were characterized to the species level by conventional and sequencing methods. Out of 93 obtained fungal colonies, 70 (75.3%) isolates were filamentous and 23 (24.7%) isolates were yeast. Aspergillus species were the predominant fungal isolates among the filamentous colonies (n=19; 27.1%), and Naganishia albida (formerly Cryptococcus albidus) was identified as the most common yeast isolate (n=13/23; 56.8%). The infectious ward was the most contaminated unit (n=19/93), while the least contaminated units were the neonatal intensive care unit (n=3/93), and oncology (n=3/93). The statistical findings displayed that the number of fungal isolates in patients' rooms is significantly higher than in nurses' stations (p-value=0.013). Our study demonstrated the presence of diverse fungal species in all wards of the hospital. Considering the presence of airborne fungi in hospitals and related public health problems is one of the critical issues for health systems management. In this regard, efficient monitoring of airborne fungi might play an influential role in hospital infection control and surveillance, particularly in high-risk hospitalization patients in critical wards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abbasi, F., & Samaei, M. R. (2019). The effect of temperature on airborne filamentous fungi in the indoor and outdoor space of a hospital. Environmental Science and Pollution Research, 26(17), 16868–16876.

    Article  CAS  Google Scholar 

  • Aghaei, H., Kordbacheh, P., Kachuei, R., Mahmoudi, S., Afshari, S. A. K., Safara, M., & Zaini, F. (2018). In vitro antifungal susceptibility testing of clinical and environmental Fusarium isolates in Iran. Archives of Clinical Infectious Diseases, 13(2), 7.

    Article  Google Scholar 

  • Barnes, C. (2019). Fungi and atopy. Clinical Reviews in Allergy & Immunology, 57(3), 439–448.

    Article  CAS  Google Scholar 

  • Belizario, J. A., Lopes, L. G., & Pires, R. H. (2021). Fungi in the indoor air of critical hospital areas: a review. Aerobiologia, 37(3), 379–394.

    Article  Google Scholar 

  • Bertout, S., Gouveia, T., Krasteva, D., Pierru, J., Pottier, C., Bellet, V., Arianiello, E., Salipante, F., Roger, F., & Drakulovski, P. (2022). Search for cryptococcus neoformans/gattii complexes and related genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) spp. Biotope: two years surveillance of wild avian fauna in southern france. Journal of Fungi, 8(3), 227.

  • Bonadonna, L., Briancesco, R., & Coccia, A. M. (2017). Analysis of microorganisms in hospital environments and potential risks. In Indoor Air Quality in Healthcare Facilities (pp. 53-62). Springer.

  • Buttner, M. P., & Stetzenbach, L. D. (1993). Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Applied and environmental microbiology, 59(1), 219–226.

    Article  CAS  Google Scholar 

  • Chirca, I. (2019). The hospital environment and its microbial burden: challenges and solutions. In (Vol. 14, pp. 1007-1010): Future Medicine.

  • Cordeiro, R. A., Brilhante, R. S., Pantoja, L. D., Moreira Filho, R. E., Vieira, P., Rocha, M. F., Monteiro, A. J., & Sidrim, J. J. (2010). Isolation of pathogenic yeasts in the air from hospital environments in the city of Fortaleza, northeast Brazil. Brazilian Journal of Infectious Diseases, 14, 30–34.

    Article  Google Scholar 

  • de Oliveira Brito, M., de Souza Bessa, M. A., de Paula Menezes, R., de Brito Röder, D. V. D., Penatti, M. P. A., Pimenta, J. P., de Aguiar, P. A. D. F., & dos Santos Pedroso, R. (2019). Isolation of Cryptococcus species from the external environments of hospital and academic areas. The Journal of Infection in Developing Countries, 13(06), 545–553.

    Article  Google Scholar 

  • Eyre, D. W., Sheppard, A. E., Madder, H., Moir, I., Moroney, R., Quan, T. P., Griffiths, D., George, S., Butcher, L., & Morgan, M. (2018). A Candida auris outbreak and its control in an intensive care setting. New England Journal of Medicine, 379(14), 1322–1331.

    Article  Google Scholar 

  • Forkel, S., Beutner, C., Schröder, S. S., Bader, O., Gupta, S., Fuchs, T., Schön, M. P., Geier, J., & Buhl, T. (2021). Sensitization against fungi in patients with airway allergies over 20 years in Germany. International Archives of Allergy and Immunology, 182(6), 515–523.

    Article  CAS  Google Scholar 

  • Fukutomi, Y., & Taniguchi, M. (2015). Sensitization to fungal allergens: resolved and unresolved issues. Allergology International, 64(4), 321–331.

    Article  CAS  Google Scholar 

  • Garcia, C. C. P., Najera, A. M. J., & Arroyo, H. O. E. (2012). Fungal and bacterial contamination on indoor surfaces of a hospital in Mexico.

  • Garg, D., Muthu, V., Sehgal, I. S., Ramachandran, R., Kaur, H., Bhalla, A., Puri, G. D., Chakrabarti, A., & Agarwal, R. (2021). Coronavirus Disease (Covid-19) Associated Mucormycosis (CAM): Case Report and Systematic Review of Literature. Mycopathologia, 186(2), 289–298. https://doi.org/10.1007/s11046-021-00528-2

    Article  CAS  Google Scholar 

  • Gharehbolagh, S. A., Nasimi, M., Afshari, S. A. K., Ghasemi, Z., & Rezaie, S. (2017). First case of superficial infection due to Naganishia albida (formerly Cryptococcus albidus) in Iran: A review of the literature. Current Medical Mycology, 3(2), 33.

    Article  Google Scholar 

  • Gnat, S., Łagowski, D., Nowakiewicz, A., & Dyląg, M. (2021). A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095–2113.

    Article  CAS  Google Scholar 

  • Kalyoncu, F. (2010). Relationship between airborne fungal allergens and meteorological factors in Manisa City. Turkey. Environmental monitoring and assessment, 165(1), 553–558.

    Article  Google Scholar 

  • Kamali Sarwestani, Z., Dasdar, A., Afshari, Agha Kuchak, & S., Gerami Shoar, M., Hashemi, S. J., Pakzad, R., Ardi, P., Abdollahi, A., Haghi-Ashtiani, M.-T., & Mahmoudi, S. (2017). Evaluation of fungal air contamination in selected wards of two tertiary hospitals in Tehran. Iran. Tehran University Medical Journal TUMS Publications, 75(4), 299–306.

    Google Scholar 

  • Karimpour Roshan, S., Godini, H., Nikmanesh, B., Bakhshi, H., & Charsizadeh, A. (2019). Study on the relationship between the concentration and type of fungal bio-aerosols at indoor and outdoor air in the Children’s Medical Center, Tehran. Iran. Environmental monitoring and assessment, 191(2), 1–13.

    CAS  Google Scholar 

  • Kiasat, N., Fatahinia, M., Mahmoudabadi, A. Z., & Shokri, H. (2017). Qualitative and quantitative assessment of airborne fungal spores in the hospitals environment of Ahvaz City (2016). Jundishapur Journal of Microbiology, 10(10), 1–6.

    Article  Google Scholar 

  • Koehler, P., Cornely, O. A., Böttiger, B. W., Dusse, F., Eichenauer, D. A., Fuchs, F., Hallek, M., Jung, N., Klein, F., Persigehl, T., Rybniker, J., Kochanek, M., Böll, B., & Shimabukuro-Vornhagen, A. (2020). COVID-19 associated pulmonary aspergillosis. Mycoses, 63(6), 528–534. https://doi.org/10.1111/myc.13096

    Article  CAS  Google Scholar 

  • Levetin, E., Horner, W. E., Scott, J. A., Barnes, C., Baxi, S., Chew, G. L., Grimes, C., Kennedy, K., Larenas-Linnemann, D., & Miller, J. D. (2016). Taxonomy of allergenic fungi. The Journal of Allergy and Clinical Immunology: In Practice, 4(3), 375-385. e371.

  • Lupetti, A., Tavanti, A., Davini, P., Ghelardi, E., Corsini, V., Merusi, I., Boldrini, A., Campa, M., & Senesi, S. (2002). Horizontal transmission of Candida parapsilosis candidemia in a neonatal intensive care unit. Journal of clinical microbiology, 40(7), 2363–2369.

    Article  Google Scholar 

  • Moretti, M. L., Busso-Lopes, A. F., Tararam, C. A., Moraes, R., Muraosa, Y., Mikami, Y., Gonoi, T., Taguchi, H., Lyra, L., & Reichert-Lima, F. (2018). Airborne transmission of invasive fusariosis in patients with hematologic malignancies. PLoS One, 13(4), e0196426.

    Article  Google Scholar 

  • Nageen, Y., Asemoloye, M. D., Põlme, S., Wang, X., Xu, S., Ramteke, P. W., & Pecoraro, L. (2021). Analysis of culturable airborne fungi in outdoor environments in Tianjin. China. BMC microbiology, 21(1), 1–10.

    Google Scholar 

  • Napoli, C., Marcotrigiano, V., & Montagna, M. T. (2012). Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres. BMC public health, 12(1), 1–6.

    Article  Google Scholar 

  • Naranjo-Ortiz, M. A., & Gabaldón, T. (2019). Fungal evolution: major ecological adaptations and evolutionary transitions. Biological Reviews, 94(4), 1443–1476.

    Article  Google Scholar 

  • Neely, A. N., & Orloff, M. M. (2001). Survival of some medically important fungi on hospital fabrics and plastics. Journal of Clinical Microbiology, 39(9), 3360–3361.

    Article  CAS  Google Scholar 

  • Odebode, A., Adekunle, A., Stajich, J., & Adeonipekun, P. (2020). Airborne fungi spores distribution in various locations in Lagos, Nigeria. Environmental Monitoring and Assessment, 192(2), 1–14.

    Article  Google Scholar 

  • Okten, S., & Asan, A. (2012). Airborne fungi and bacteria in indoor and outdoor environment of the Pediatric Unit of Edirne Government Hospital. Environmental Monitoring and Assessment, 184(3), 1739–1751.

    Article  Google Scholar 

  • Peláez-García de la Rasilla, T., González-Jiménez, I., Fernández-Arroyo, A., Roldán, A., Carretero-Ares, J. L., García-Clemente, M., Telenti-Asensio, M., García-Prieto, E., Martínez-Suarez, M., & Vázquez-Valdés, F. (2022). COVID-19 Associated Pulmonary Aspergillosis (CAPA): Hospital or Home Environment as a Source of Life-Threatening Aspergillus fumigatus Infection? Journal of Fungi, 8(3), 316.

    Article  Google Scholar 

  • Perlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycology, 45(4), 321–346.

    Article  Google Scholar 

  • Pini, G., Faggi, E., Donato, R., & Fanci, R. (2005). Isolation of Trichosporon in a hematology ward. Mycoses, 48(1), 45–49.

    Article  CAS  Google Scholar 

  • Schmidt, S. K., Vimercati, L., Darcy, J. L., Arán, P., Gendron, E. M., Solon, A. J., Porazinska, D., & Dorador, C. (2017). A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology, 8(3), 153–163.

    Article  CAS  Google Scholar 

  • Segura-Medina, P., Vargas, M. H., Aguilar-Romero, J. M., Arreola-Ramírez, J. L., Miguel-Reyes, J. L., & Salas-Hernández, J. (2019). Mold burden in house dust and its relationship with asthma control. Respiratory Medicine, 150, 74–80.

    Article  Google Scholar 

  • Sham, N. M., Ahmad, N. I., Pahrol, M. A., & Leong, Y.-H. (2021). Fungus and mycotoxins studies in hospital environment: A scoping review. Building and Environment, 193, 107626.

    Article  Google Scholar 

  • Toyotome, T., Hagiwara, D., Takahashi, H., Watanabe, A., & Kamei, K. (2018). Emerging antifungal drug resistance in Aspergillus fumigatus and among other species of Aspergillus. Current Fungal Infection Reports, 12(3), 105–111.

    Article  Google Scholar 

  • van Arkel, A. L., Rijpstra, T. A., Belderbos, H. N., Van Wijngaarden, P., Verweij, P. E., & Bentvelsen, R. G. (2020). COVID-19–associated pulmonary aspergillosis. American Journal of Respiratory and Critical Care Medicine, 202(1), 132–135.

    Article  Google Scholar 

  • van Asbeck, E. C., Huang, Y.-C., Markham, A. N., Clemons, K. V., & Stevens, D. A. (2007). Candida parapsilosis fungemia in neonates: genotyping results suggest healthcare workers hands as source, and review of published studies. Mycopathologia, 164(6), 287–293.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18(1), 315–322.

    Google Scholar 

  • Yamada, Y., Makimura, K., Merhendi, H., Ueda, K., Nishiyama, Y., Yamaguchi, H., & Osumi, M. (2002). Comparison of different methods for extraction of mitochondrial DNA from human pathogenic yeasts. Japanese Journal of Infectious Diseases, 55(4), 122–125.

    CAS  Google Scholar 

  • Ziaee, A., Zia, M., & Goli, M. (2018). Identification of saprophytic and allergenic fungi in indoor and outdoor environments. Environmental Monitoring and Assessment, 190(10), 1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the head of Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran, for supporting this project.

Funding

This study was financially supported by Kerman University of Medical Sciences, Grant No.: 400000268. Partial financial support was received from the Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Mahdi Hajhosseini and Setareh Agha Kuchak Afshari designed and completed the experiments. Isolation and identification of fungi were conducted by Mahdi Hajhosseini, Azam Amanizadeh, and Setareh Agha Kuchak Afshari. Data collection and analysis and writing the first draft of the manuscript were carried out by Iraj Sharifi, Mehdi Bamorovat, Ali Karamoozian, and Setareh Agha Kuchak Afshari. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Setareh Agha Kuchak Afshari.

Ethics declarations

Ethics statement

The Research Ethics Committee of Kerman University of Medical Sciences approved the study (Ethics no: IR.KMU.REC.1400.353).

Consent to participate

Consent to participate in this study from the Afzalipour Hospital was obtained.

Competing interests

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajhosseini, M., Sharifi, I., Bamorovat, M. et al. Monitoring of airborne fungi during the second wave of COVID-19 in selected wards of the referral university hospital in southeastern Iran. Environ Monit Assess 195, 1132 (2023). https://doi.org/10.1007/s10661-023-11791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11791-9

Keywords

Navigation