Skip to main content

Advertisement

Log in

Prediction of glaciated area fraction over the Sikkim Himalayan Region, India: a comparative study using response surface method, random forest, and artificial neural network

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Glacier area fraction at high altitude mountains is a serious worry in today’s time triggered by climate change. The current information on this natural resource is very important for the survival of humanity as it affects the water, food, and energy security of people dependent on it. Due to its problematic accessibility and tough environmental condition, ground monitoring is quite challenging. This study investigates the impact of environmental parameters and pollutants on glacier area fraction over the Eastern Himalaya region and its prediction through random forest (RF), multilayer perceptron (MLP), radial basis function analysis (RBFN), and response surface methodology (RSM) models. The data are obtained from the Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA’s data archive portal (https://giovanni.gsfc.nasa.gov). The collinearity of independent variables reveals that all selected input parameters are highly correlated with R2 value > 0.9. The RSM and RF model provided valuable insight of the predictor’s significance in addition to their capability to predict the response. The model performance was evaluated in terms of R2 value and the error matrices. The model’s R2 value was found to be 0.843, 0.839, 0.838, and 0.743 for MLP, RBFN, RF, and RSM respectively. Although, the neural network model R2 values are the highest, but the most reliable and suitable model is RF as the error matrices for this model are much lower than others. This study encourages the investigation of the hybridization of these models for more accurate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that are used for this study are openly available in Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA’s data archive portal (https://giovanni.gsfc.nasa.gov).

References

  • Aas, K. S., Dunse, T., Collier, E., Schuler, T. V., Berntsen, T. K., Kohler, J., & Luks, B. (2016). The climatic mass balance of Svalbard glaciers: A 10-year simulation with a coupled atmosphere-glacier mass balance model. The Cryosphere, 10(3), 1089–1104. https://doi.org/10.5194/tc-10-1089-2016

    Article  Google Scholar 

  • Aggarwal, S., Rai, S. C., Thakur, P. K., & Emmer, A. (2017). Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya. Geomorphology. https://doi.org/10.1016/j.geomorph.2017.06.014

  • Alifu, H., Vuillaume, J. F., Johnson, B. A., & Hirabayashi, Y. (2020). Machine-learning classification of debris-covered glaciers using a combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data. Geomorphology, 369, 107365. https://doi.org/10.1016/j.geomorph.2020.107365

  • Altena, B., & Kääb, A. (2017). Weekly glacier flow estimation from dense satellite time series using adapted optical flow technology. Frontiers in Earth Science, 5(June), 1–12. https://doi.org/10.3389/feart.2017.00053

    Article  Google Scholar 

  • Andreae, M. (2019). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical. Atomospheric Chemistry and Physics, 15(4), 1–2, 10–11. Retrieved May 5, 2023, from https://www.atmos-chem-phys-discuss.net/acp-2019-303/acp-2019-303.pdf

  • Arabameri, A., Pal, S. C., Rezaie, F., Nalivan, O. A., Chowdhuri, I., Saha, A., Lee, S., & Moayedi, H. (2021). Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques. Journal of Hydrology: Regional Studies, 36(June), 100848. https://doi.org/10.1016/j.ejrh.2021.100848

  • Arun, B. S., Gogoi, M. M., Borgohain, A., Hegde, P., Kundu, S. S., & Babu, S. S. (2021). Role of sulphate and carbonaceous aerosols on the radiative effects of aerosols over a remote high-altitude site Lachung in the Eastern Himalayas. Atmospheric Research, 263(August), 105799. https://doi.org/10.1016/j.atmosres.2021.105799

  • Bali, K., Mishra, A. K., & Singh, S. (2017). Impact of anomalous forest fire on aerosol radiative forcing and snow cover over Himalayan region. Atmospheric Environment, 150, 264–275. https://doi.org/10.1016/j.atmosenv.2016.11.061

    Article  CAS  Google Scholar 

  • Baral, P., & Haq, M. A. (2020). Spatial prediction of permafrost occurrence in Sikkim Himalayas using logistic regression, random forests, support vector machines and neural networks. Geomorphology, 371, 107331. https://doi.org/10.1016/j.geomorph.2020.107331

  • Bhattacharjee, S., & Pandey, A. C. (2023). Estimating thickness of Zemu Glacier, Sikkim (India) using ice-flow velocity approach: A geoinformatics based perspective. Spatial Information Research, (March). https://doi.org/10.1007/s41324-023-00515-3

  • Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7

    Article  Google Scholar 

  • Bolibar, J., Rabatel, A., Gouttevin, I., Zekollari, H., & Galiez, C. (2022). Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning. Nature Communications, 13(1), 1–11. https://doi.org/10.1038/s41467-022-28033-0

    Article  CAS  Google Scholar 

  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171

  • Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings, 158(November 2017), 1429–1441. https://doi.org/10.1016/j.enbuild.2017.11.045

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1023/A:1018054314350

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breiman, L. (2003). Setting up, using, and understanding random forests V3.1. https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

  • Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling and Software, 119(June), 285–304. https://doi.org/10.1016/j.envsoft.2019.06.014

    Article  Google Scholar 

  • Chowdhuri, I., Pal, S. C., Arabameri, A., Ngo, P. T. T., Chakrabortty, R., Malik, S., Das, B., & Roy, P. (2020). Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region. India. Environmental Earth Sciences, 79(20), 1–28. https://doi.org/10.1007/s12665-020-09227-5

    Article  Google Scholar 

  • Chowdhuri, I., Pal, S. C., Chakrabortty, R., Malik, S., Das, B., & Roy, P. (2021). Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya. Natural Hazards, 107(1), 697–722. https://doi.org/10.1007/s11069-021-04601-3

    Article  Google Scholar 

  • Dastres, R., & Soori, M. (2021). Artificial neural network systems. International Journal of Imaging and Robotics (IJIR), (2), 13–25. Retrieved May 3, 2023, from www.ceserp.com/cp-jour

  • Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., & Stoffel, M. (2014). Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere, 8(6), 2313–2333. https://doi.org/10.5194/tc-8-2313-2014

    Article  Google Scholar 

  • Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

  • Greuell, W., & Konzelmann, T. (1994). Numerical modelling of the energy balance and the englacial temperature of the Greenland ice sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global and Planetary Change, 9(1–2), 91–114. https://doi.org/10.1016/0921-8181(94)90010-8

  • Grinsted, A. (2013). An estimate of global glacier volume. The Cryosphere, 7(1), 141–151. https://doi.org/10.5194/tc-7-141-2013

    Article  Google Scholar 

  • Guidicelli, M., Huss, M., Gabella, M., & Salzmann, N. (2023). Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning. The Cryosphere, 17(2), 977–1002. https://doi.org/10.5194/tc-17-977-2023

    Article  Google Scholar 

  • Gürel, A. E., Ağbulut, Ü., & Biçen, Y. (2020). Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation. Journal of Cleaner Production, 277, 122353. https://doi.org/10.1016/j.jclepro.2020.122353

  • Haq, M. A., Azam, M. F., & Vincent, C. (2021a). Efficiency of artificial neural networks for glacier ice-thickness estimation: A case study in western Himalaya. India. Journal of Glaciology, 67(264), 671–684. https://doi.org/10.1017/jog.2021.19

    Article  Google Scholar 

  • Haq, M. A., Alshehri, M., Rahaman, G., Ghosh, A., Baral, P., & Shekhar, C. (2021b). Snow and glacial feature identification using Hyperion dataset and machine learning algorithms. Arabian Journal of Geosciences, 14(15). https://doi.org/10.1007/s12517-021-07434-3

  • Ibarra-Berastegi, G., Elias, A., Barona, A., Saenz, J., Ezcurra, A., & Diaz de Argandoña, J. (2008). From diagnosis to prognosis for forecasting air pollution using neural networks: Air pollution monitoring in Bilbao. Environmental Modelling and Software, 23(5), 622–637. https://doi.org/10.1016/j.envsoft.2007.09.003

    Article  Google Scholar 

  • Janizadeh, S., Chandra Pal, S., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., Mosavi, H. A., & Tiefenbacher, J. P. (2021). Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. Journal of Environmental Management, 298(February), 113551. https://doi.org/10.1016/j.jenvman.2021.113551

  • Kaushik, S., Singh, T., Joshi, P. K., & Dietz, A. J. (2022). Automated mapping of glacial lakes using multisource remote sensing data and deep convolutional neural network. International Journal of Applied Earth Observation and Geoinformation, 115(July), 103085. https://doi.org/10.1016/j.jag.2022.103085

  • Kumari, S., & Middey, A. (2023). A comprehensive appraisal on the effect of aerosol on mountain glaciers: Special reference to Sikkim Himalayan region of India. Sadhana - Academy Proceedings in Engineering Sciences, 48(2). https://doi.org/10.1007/s12046-023-02097-0

  • Lightstone, S. D., Moshary, F., & Gross, B. (2017). Comparing CMAQ forecasts with a neural network forecast model for PM2.5 in New York. Atmosphere, 8(9). https://doi.org/10.3390/atmos8090161

  • Markowicz, K. M., Zawadzka-Manko, O., Lisok, J., Chilinski, M. T., & Xian, P. (2021). The impact of moderately absorbing aerosol on surface sensible, latent, and net radiative fluxes during the summer of 2015 in Central Europe. Journal of Aerosol Science, 151(June 2020), 105627. https://doi.org/10.1016/j.jaerosci.2020.105627

  • McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., & Verdin, J. P. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4, 1–19. https://doi.org/10.1038/sdata.2017.12

    Article  Google Scholar 

  • Montgomery, D. C. (2016). Design and analysis of experiments. Handbook of Reading Research. https://doi.org/10.2307/2983009

    Article  Google Scholar 

  • Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1(2), 281–294. https://doi.org/10.1162/neco.1989.1.2.281

    Article  Google Scholar 

  • Nair, V. S., Babu, S. S., Moorthy, K. K., Sharma, A. K., Marinoni, A., & Ajai. (2013). Black carbon aerosols over the Himalayas: Direct and surface albedo forcing. Tellus, Series B: Chemical and Physical Meteorology, 65(1). https://doi.org/10.3402/tellusb.v65i0.19738

  • Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S., Nepal, S., Samyan, D., Hewitt, K., & Chen, X. (2021). Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth and Environment, 2(2), 91–106. https://doi.org/10.1038/s43017-020-00124-w

    Article  Google Scholar 

  • Nigam, S., & Bollasina, M. (2010). “Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link: “Grounded” in observations? Journal of Geophysical Research Atmospheres, 115(16), 4–10. https://doi.org/10.1029/2009JD013800

    Article  Google Scholar 

  • Pal, S. C., Arabameri, A., Blaschke, T., Chowdhuri, I., Saha, A., Chakrabortty, R., Lee, S., & Band, S. S. (2020). Ensemble of machine-learning methods for predicting gully erosion susceptibility. Remote Sensing, 12(22), 1–25. https://doi.org/10.3390/rs12223675

    Article  Google Scholar 

  • Péré, J. C., Mallet, M., Pont, V., & Bessagnet, B. (2011). Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study. Journal of Geophysical Research Atmospheres, 116(23), 1–12. https://doi.org/10.1029/2011JD016240

    Article  CAS  Google Scholar 

  • Pilkington, J. L., Preston, C., & Gomes, R. L. (2014). Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Industrial Crops and Products, 58(July), 15–24. https://doi.org/10.1016/j.indcrop.2014.03.016

    Article  CAS  Google Scholar 

  • Prokhorova, U., Terekhov, A., Ivanov, B., & Demidov, V. (2023). Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research, 55(1). https://doi.org/10.1080/15230430.2023.2190057

  • Roy, P., Chakrabortty, R., Chowdhuri, I., Malik, S., Das, B., & Pal, S. C. (2020). Development of different machine learning ensemble classifier for gully erosion susceptibility in Gandheswari watershed of West Bengal, India. In: Rout, J., Rout, M., Das, H. (eds) Machine Learning for Intelligent Decision Science. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-3689-2_1

  • Saha, A., Pal, S. C., Chowdhuri, I., Islam, A. R. M. T., Chakrabortty, R., & Roy, P. (2022a). Application of neural network model-based framework approach to identify gully erosion potential hotspot zones in sub-tropical environment. Geocarto International, 37(26), 14758–14784. https://doi.org/10.1080/10106049.2022.2091042

    Article  Google Scholar 

  • Saha, S., Bhattacharjee, S., Shit, P. K., Sengupta, N., & Bera, B. (2022b). Deforestation probability assessment using integrated machine learning algorithms of Eastern Himalaya foothills (India).

  • Shahraiyni, H. T., & Sodoudi, S. (2016). Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere (Basel), 7, 10–13. https://doi.org/10.3390/atmos7020015

    Article  Google Scholar 

  • Thapa, S., Zhao, Z., Li, B., Lu, L., Fu, D., Shi, X., & Qi, H. (2020). Snowmelt-driven streamflow prediction using machine learning techniques (LSTM, NARX, GPR, and SVR). Water.

  • Van Gerven, M. A. J., & Bohte, S. M. (2017). Editorial: Artificial neural networks as models of neural information processing. Frontiers in Computational Neuroscience, 11(114), 1–2. https://doi.org/10.1038/nature14539

  • Vogel, A., Alessa, G., Scheele, R., Weber, L., Dubovik, O., North, P., & Fiedler, S. (2022). Uncertainty in aerosol optical depth from modern aerosol-climate models, reanalyses, and satellite products. Journal of Geophysical Research: Atmospheres127, e2021JD035483. https://doi.org/10.1029/2021JD035483

  • Wang, G., Hao, X., Yao, X., Wang, J., Li, H., Chen, R., & Liu, Z. (2023). Simulations of snowmelt runoff in a high-altitude mountainous area based on big data and machine learning models: Taking the Xiying River Basin as an example. Remote Sensing, 15(4). https://doi.org/10.3390/rs15041118

  • Wang, X., & Wang, X. (2020). Spatiotemporal fusion of remote sensing image based on deep learning. Journal of Sensors, 2020. https://doi.org/10.1155/2020/8873079

  • Wangchuk, S., & Bolch, T. (2020). Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: Strengths and challenges. Science of Remote Sensing, 2(April), 100008. https://doi.org/10.1016/j.srs.2020.100008

  • Wu, H., Li, G., Liu, S., Hu, N., Geng, D., Chen, G., Sun, Z., Zhao, X., Xia, L., & You, J. (2015). Disrupting chemicals in chicken, fish and aquaculture pond water. https://doi.org/10.1016/j.foodchem.2015.06.059

  • Wu, R., Liu, G., Zhang, R., Wang, X., Li, Y., Zhang, B., Cai, J., & Xiang, W. (2020). A deep learning method for mapping glacial lakes from the combined use of synthetic-aperture radar and optical satellite images. Remote Sensing, 12(24), 1–18. https://doi.org/10.3390/rs12244020

    Article  Google Scholar 

  • Yuan, Q., Xu, J., Liu, L., Zhang, A., Liu, Y., Zhang, J., Wan, X., Mengmeng, Li., Qin, K., Cong, S., Wang, Y., Shi, Z., Posfai, M., & Li, W. (2021). Evidence for large amounts of brown carbonaceous tarballs in the Himalayan atmosphere. Environmental Science and Technology Letters, 8(1), 16–23. https://doi.org/10.1021/acs.estlett.0c00735

    Article  CAS  Google Scholar 

  • Zeb, B., Alam, K., Sorooshian, A., Chishtie, F., Ahmad, I., & Bibi, H. (2019). Temporal characteristics of aerosol optical properties over the glacier region of northern Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 186, 35–46. https://doi.org/10.1016/j.jastp.2019.02.004

    Article  Google Scholar 

Download references

Acknowledgements

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) data used in this study have been provided by the Global Modelling and Assimilation Office (GMAO) at NASA Goddard Space Flight Centre.

Funding

The corresponding author has no financial interests. The first author has a fellowship and research grant from the Department of Science and Technology (DST), India, through Women Scientist Scheme (WoS-B) (grant no. DST/WOS-B/AFE-35/2021 (G)) to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

Sweta Kumari: conceptualization, data curation, methodology, original draft writing, review and editing; Anirban Middey: overall supervision, ANN methodology, review and editing, validation.

Corresponding author

Correspondence to Anirban Middey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Middey, A. Prediction of glaciated area fraction over the Sikkim Himalayan Region, India: a comparative study using response surface method, random forest, and artificial neural network. Environ Monit Assess 195, 1230 (2023). https://doi.org/10.1007/s10661-023-11770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11770-0

Keywords

Navigation