Skip to main content
Log in

Evaluation of multifrequency SAR data for estimating tropical above-ground biomass by employing radiative transfer modeling

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The retrieval of the biophysical parameters and subsequent estimation of the above-ground biomass (AGB) of vegetation stands are made possible by the simulation of the extinction and scattering components from the canopy layer using vector radiative transfer (VRT) theory-based scattering models. With the use of such a model, this study aims to evaluate and compare the potential of dual-pol, multi-frequency SAR data for estimating above-ground biomass. The data selected for this work are L-band dual polarized (HH/HV) ALOS-2 data, S-band dual polarized (HH/HV) NovaSAR data, and C-band dual polarized (VV/VH) Sentinel-1 data. The two key biophysical parameters, tree height, and trunk radius are retrieved using the proposed methodology, applying the frequencies independently. A general allometric equation with vegetation-specific coefficients is used to estimate the AGB from the retrieved biophysical parameters. The retrieval results are validated using ground truth measurements collected from the study area. The L-band, with the coefficient of determination (\(R^2\)) of 0.73 and the root mean square error (RMSE) of 35.90 t/ha, has the best correlation between the modeled and field AGBs, followed by the S-band with an \(R^2\) of 0.37 and an RMSE of 63.37 t/ha, and the C-band with an \(R^2\) of 0.25 and an RMSE of 72.32 t/ha. The L-band has yielded improved estimates of AGB in regression analysis as well, with an \(R^2\) of 0.48 and an RMSE of 50.02 t/ha, compared to the S- and C-bands, which have the \(R^2\) of 0.12 and 0.03 and the RMSE of 70.98 t/ha and 80.84 t/ha, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  • Berninger, A., Lohberger, S., Stängel, M., & Siegert, F. (2018). SAR-based estimation of above-ground biomass and its changes in tropical forests of Kalimantan using L- and C-Band. Remote Sensing, 10(6), 831–853. https://doi.org/10.3390/rs10060831

    Article  Google Scholar 

  • Bharadwaj, P. S., Kumar, S., Kushwaha, S. P. S., & Bijker, W. (2015). Polarimetric scattering model for estimation of above-ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data. Physics and Chemistry of the Earth, 83(84), 187–195. https://doi.org/10.1016/j.pce.2015.09.003

    Article  Google Scholar 

  • Binder, S. B., Haight, R. G., Polasky, S., Warziniack, T., Mockrin, M. H., Deal, R. L., & Arthaud, G. (2017, May). Assessment and valuation of forest ecosystem services: State of the science review. In general technical report NRS-170. Newtown Square, Pennsylvania, U.S. Department of Agriculture, Forest Service, Northern Research Station. 47 p.

  • Brahma, B., Sileshi, G. W., Nath, A. J., & Das, A. K. (2017). Development and evaluation of robust tree biomass equations for rubber tree (Hevea brasiliensis) plantations in India. Forest Ecosystems, 4, 14. https://doi.org/10.1186/s40663-017-0101-3

    Article  Google Scholar 

  • Brown, S. (2002). Measuring carbon in forests: Current status and future challenges. Environmental Pollution, 116(3), 363–372. https://doi.org/10.1016/S0269-7491(01)00212-3

    Article  CAS  Google Scholar 

  • Campbell, J. S., Liefers, J., & Pielou, E. C. (1985). Regression equations for estimating single tree biomass of trembling Aspen: Assessing their applicability to more than one population. Forest Ecology and Management, 11(4), 283–295. https://doi.org/10.1016/0378-1127(85)90106-9

    Article  Google Scholar 

  • Cartus, O., Santoro, M., & Kellndorfer, J. (2012). Mapping forest above-ground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sensing of Environment, 124, 466–478. https://doi.org/10.1016/j.rse.2012.05.029

    Article  Google Scholar 

  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B., & Yamakura, V. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  CAS  Google Scholar 

  • Corona, P. (2016). Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environmental Research, 144, 8–14. https://doi.org/10.1016/j.envres.2015.10.017

    Article  CAS  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412–415. https://doi.org/10.1109/36.134090

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., Pierce, L. E., Sharick, T. L., Bergen, K. M., Kellndorfer, J., Kendra, J. R., Li, E., Lin, Y. C., Nashashbi, A., Sarabandi, K., & Siqueira, P. (1995). Estimation of forest biophysical characteristics in Northern Michigan with SIRC/X-SAR. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 877–895. https://doi.org/10.1109/36.406674

    Article  Google Scholar 

  • Du, Y., Ulaby, F. T., & Dobson, M. C. (2000). Sensitivity to soil moisture by active and passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 38, 105–114. https://doi.org/10.1109/36.823905

    Article  Google Scholar 

  • Eom, H. J., & Fung, A. K. (1984). A scatter model for vegetation up to Ku-band. Remote Sensing of Environment, 15(3), 185–200. https://doi.org/10.1016/0034-4257(84)90030-0

    Article  Google Scholar 

  • European Space Agency. (2008). BIOMASS: Candidate earth explorer core missions - Reports for assessment, ESA SP-1313-2 (p. 122). Mission Science Division, ESA-ESTEC: Noordwijk, the Netherlands.

  • European Space Agency. (2012). Report for mission selection: BIOMASS, ESA SP 1324/1 (3 vol. series), ESA, Noordwijk, the Netherlands. 193 p.

  • European Space Agency. (2015). User Guides - Sentinel-1 SAR. Retrieved August 8, 2023, from https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/

  • Exelis Visual Information Solutions. (2015). ENVI 5.3 Release Notes. Retrieved August 8, 2023, from https://www.l3harris.com/

  • FAO. (2015). Global forest resources assessment: How are the world’s forests are changing? Retrieved August 8, 2023, from https://www.fao.org/publications

  • Ferrazzoli, P., & Guerriero, L. (1995). Radar sensitivity to tree geometry and woody volume: A model analysis. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 360–371. https://doi.org/10.1109/TGRS.1995.8746017

    Article  Google Scholar 

  • Fung, A. K., & Ulaby, F. T. (1978). A scatter model for leafy vegetation. IEEE Transactions on Geoscience and Remote Sensing, 23(4), 281–286. https://doi.org/10.1109/TGE.1978.294585

    Article  Google Scholar 

  • Fung, A. K., & Chen, K. S. (2010). Microwave scattering and emission models for users. Norwood, MA, USA: Artech House.

    Google Scholar 

  • GCOS. (2010). Implementation plan for the global observing system for climate in support of the UNFCCC. Retrieved June 14, 2022, from https://library.wmo.int/doc_num.php?explnum_id=3851

  • Hamdan, O., Khali Aziz, H., & Mohd Hasmad, I. (2014). L-band ALOS PALSAR for biomass estimation of Matang mangroves, Malaysia. Remote Sensing of Environment, 155, 69–78. https://doi.org/10.1016/j.rse.2014.04.029

    Article  Google Scholar 

  • Harrell, P. A., Kasischke, E. S., Bourgeau-Chavez, L. L., Haney, E. M., & Christensen, N. L., Jr. (1997). Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data. Remote Sensing of Environment, 59, 223–233. https://doi.org/10.1016/S0034-4257(96)00155-1

    Article  Google Scholar 

  • Hongliang, F., & Shunlin, L. (2003). Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 2052–2062. https://doi.org/10.1109/TGRS.2003.813493

    Article  Google Scholar 

  • Houborg, R., Soegaard, H., & Boegh, E. (2007). Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sensing of Environment, 106(1), 39–58. https://doi.org/10.1016/j.rse.2006.07.016

    Article  Google Scholar 

  • Imhoff, M. L. (1995). Radar backscatter and biomass saturation: Ramification for global biomass inventory. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 511–518. https://doi.org/10.1109/TGRS.1995.8746034

    Article  Google Scholar 

  • IPCC. (2006). Intergovernmental panel on climate change guidelines for national greenhouse gas inventories. Retrieved June 14, 2022, from https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

  • Jacquemoud, S., Baret, F., Andrieu, B., Danson, F., & Jaggard, K. (1995). Extraction of vegetation biophysical parameters by inversion of the PROSPECT+ SAIL models on sugar beet canopy reflectance data, application to TM and AVIRIS sensors. Remote Sensing of Environment, 52(3), 163–172. https://doi.org/10.1016/0034-4257(95)00018-V

    Article  Google Scholar 

  • Karam, M. A., & Fung, A. K. (1982). Vector forward scattering theorem. Radio Science, 17(4), 752–756. https://doi.org/10.1029/RS017i004p00752

    Article  Google Scholar 

  • Karam, M. A., & Fung, A. K. (1988). Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation. International Journal of Remote Sensing, 9(6), 1109–1134. https://doi.org/10.1080/01431168808954918

    Article  Google Scholar 

  • Karam, M. A., Amar, F., Fung, A. K., Mougin, E., Lopes, A., Le Vine, D. M., & Beaudoin, A. (1995). A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory. Remote Sensing of Environment, 53(1), 16–30. https://doi.org/10.1016/0034-4257(95)00048-6

    Article  Google Scholar 

  • Kellndorfer, J. M., Pierce, L. E., Dobson, M. C., & Ulaby, F. T. (1998). Toward consistent regional-to-global-scale vegetation characterization using orbital SAR systems. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1395–1411. https://doi.org/10.1109/36.718844

    Article  Google Scholar 

  • Lee, J. K., & Kong, J. A. (1985). Active microwave remote sensing of anisotropic random medium layer. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1), 910-923. https://doi.org/10.1109/TGRS.1981.350329

  • Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403–411. https://doi.org/10.1109/36.134089

    Article  Google Scholar 

  • Liang, P., Moghaddam, M., Pierce, L. E., & Lucas, R. M. (2005). Radar backscattering model for multilayer mixed-species forests. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2612–2626. https://doi.org/10.1109/TGRS.2005.847909

    Article  Google Scholar 

  • Liao, J., Shen, G., & Dong, L. (2013). Biomass estimation of wetland vegetation in Poyang lake area using ENVISAT advanced synthetic aperture radar data. Remote Sensing, 7(1), 3579–3593. https://doi.org/10.1117/1.JRS.7.073579

    Article  Google Scholar 

  • Lucas, R. M., Held, A., Phinn, S. R., & Saatchi, S. (2004). Tropical forests. In S. U. Bethesda (Eds.), Manual of remote sensing, Remote sensing for natural resource assessment (4th ed., pp. 239-315). American Society for Photogrammetry and Remote Sensing.

  • Lucas, R., Armston, J., Fairfax, R., Fensham, R., Aaccad, A., Carreiras, J., Kelley, J., Bunting, P., Clewley, D., & Bray, S. (2010). An evaluation of the ALOS Palsar L-band backscatter-above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(4), 576–593. https://doi.org/10.1109/JSTARS.2010.2086436

    Article  Google Scholar 

  • Luckman, A., Baker, J., Honzak, M., & Lucas, R. (1998). Tropical forest biomass density estimation using JERS-1 SAR: Seasonal variation, confidence limits, and application to image mosaics. Remote Sensing of Environment, 63(2), 126–139. https://doi.org/10.1016/S0034-4257(97)00133-8

    Article  Google Scholar 

  • Luckman, A., Baker, J., Kuplich, T. M., Yanasse, C. C. F., & Frery, A. C. (1997). A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments. Remote Sensing of Environment, 60(1), 1–13. https://doi.org/10.1016/S0034-4257(96)00121-6

    Article  Google Scholar 

  • Mandal, D., Hosseini, M., McNairn, H., Kumar, V., Bhattacharyaa, A., Rao, Y. S., Mitchell, S., Robertson, L. D., Davidson, A., & Dabrowska-Zielinska, K. (2019). An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data. International Journal of Applied Earth Observation and Geoinformation, 82, 101893–101904. https://doi.org/10.1016/j.jag.2019.06.003

    Article  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC, USA: Island Press.

    Google Scholar 

  • Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., Ryan, C. M., Lewis, S. L., Feldpausch, T. R., & Meir, P. (2009). Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36(23), L23401. https://doi.org/10.1029/2009GL040692

    Article  Google Scholar 

  • Mitchard, E. T. A., Saatchi, S. S., Lewis, S. L., Feldpausch, T. R., Woodhouse, I. H., Sonké, B., Rowland, C., & Meir, P. (2011). Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of Central Africa using multi-temporal L-band radar backscatter. Remote Sensing of Environment, 115(11), 2861–2873. https://doi.org/10.1016/j.rse.2010.02.022

    Article  Google Scholar 

  • Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G., Monteagudo, A., & Baker, T. R. (2014). Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 23(8), 935–946. https://doi.org/10.1111/geb.12168

    Article  Google Scholar 

  • Morales, J. L. (2002). Numerical study of limited memory BFGS methods. Applied Mathematics Letters, 15(4), 481–487. https://doi.org/10.1016/0034-4257(95)00018-V

    Article  Google Scholar 

  • Mougin, E., Lopes, A., Karam, M. A., & Fung, A. K. (1993). Effect of tree structure on X band microwave signature of conifers. IEEE Transactions on Geoscience and Remote Sensing, 31(3), 655–667. https://doi.org/10.1109/36.225532

    Article  Google Scholar 

  • Ningthoujam, R. K., Balzter, H., Tansey, K., Morrison, K., Johnson, S. C. M., Gerard, F., George, C., Malhi, Y., Burbidge, G., Doody, S., Veck, N., Llewellyn, G. M., Blythe, T., Rodriguez-Veiga, P., Beijma, S. V., Spies, B., Barnes, C., Padilla-Parellada, M., Wheeler, J. E. M., … Bermejo, J. P. (2016). Airborne S-band SAR for forest biophysical retrieval in temperate mixed forests of the UK. Remote Sensing, 8, 609. https://doi.org/10.3390/rs8070609

    Article  Google Scholar 

  • Ningthoujam, R. K., Balzter, H., Tansey, K., Feldpausch, T. R., Mitchard, E. T., Wani, A., & Joshi, P. K. (2017). Relationships of S-band radar backscatter and forest aboveground biomass in different forest type. Remote Sensing, 9(11), 1116. https://doi.org/10.3390/rs9111116

    Article  Google Scholar 

  • Oh, Y., Hong, J., & Lee, S. (1985). A simple microwave backscattering model for vegetation canopies. Journal of the Korea Electromagnetic Engineering Society, 5(4), 183–188. https://doi.org/10.1109/36.841999

    Article  Google Scholar 

  • Peregon, A., & Yamagata, Y. (2013). The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia. Remote Sensing of Environment, 137, 139–146. https://doi.org/10.1016/j.rse.2013.06.012

    Article  Google Scholar 

  • Ploton, P., Pélissier, R., Proisy, C., Flavenot, T., Barbier, N., Rai, S. N., & Couteron, P. (2012). Assessing above-ground tropical forest biomass using Google Earth canopy images. Ecological Applications, 22(3), 993–1003. https://doi.org/10.2307/23213933

    Article  Google Scholar 

  • Polatin, P. F., & Sarabandi, K. (1994). An iterative inversion algorithm with application to the polarimetric radar response of vegetation canopies. IEEE Transactions on Geoscience and Remote Sensing, 32(1), 62–71. https://doi.org/10.1109/36.285189

    Article  Google Scholar 

  • Pulliainen, J. T., Kurvonen, L., & Hallikainen, M. T. (1999). Multitemporal behavior of L- and C-band SAR observations boreal forests. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 927–937. https://doi.org/10.1109/36.752211

    Article  Google Scholar 

  • Quan, X. W., He, B. B., & Li, X. (2015). A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval. Remote Sensing of Environment, 53(12), 6507–6517. https://doi.org/10.1109/TGRS.2015.2442999

    Article  Google Scholar 

  • Ranson, K. J., & Sun, G. (1994). Mapping biomass of a Northern forest using multifrequency SAR data. IEEE Transactions on Geoscience and Remote Sensing, 32(2), 388–396. https://doi.org/10.1109/36.295053

    Article  Google Scholar 

  • Ranson, K. J., & Sun, G. (1997). Mapping of boreal forest biomass from spaceborne synthetic aperture radar. Journal of Geophysical Research, 102(D24), 29599–29610. https://doi.org/10.1029/96JD03708

    Article  CAS  Google Scholar 

  • Reddy, C. S., Rakesh, F., Jha, C. S., Athira, K., Singh, S., PadmaAlekhya, V. V. L., Rajashekar, G., Diwakar, P. G., & Dadhwal, V. K. (2016). Geospatial assessment of long-term changes in carbon stocks and fluxes in forests of India (1930–2013). Global and Planetary Change, 143, 50–65. https://doi.org/10.1016/j.gloplacha.2016.05.011

    Article  Google Scholar 

  • Sandberg, G., Ulander, L. M. H., Fransson, J. E. S., Holmgren, J., & Le Toan, T. (2011). L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sensing of Environment, 115, 2874–2886. https://doi.org/10.1016/j.rse.2010.03.018

    Article  Google Scholar 

  • Santos, J. R., Freitas, C. C., Araujo, L. S., Dutra, L. V., Mura, J. C., Gama, F. F., Soler, L. S., & Sant’Anna, S. J. S. (2003). Airborne P-band SAR applied to the above-ground biomass studies in the Brazilian tropical rainforest. Remote Sensing of Environment, 87, 482–493. https://doi.org/10.1016/j.rse.2002.12.001

    Article  Google Scholar 

  • Saatchi, S. S., & McDonald, K. C. (1997). Coherent effects in microwave backscattering models for forest canopies. IEEE Transactions on Geoscience and Remote Sensing, 35, 1032–1044. https://doi.org/10.1109/36.602545

    Article  Google Scholar 

  • Saatchi, S. S., & Moghaddam, M. (2000). Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 697–709. https://doi.org/10.1109/36.841999

    Article  Google Scholar 

  • Saatchi, S., Marlier, M., Chazdon, R. L., Clark, D. B., & Russell, A. E. (2011). Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment, 115, 2836–2849. https://doi.org/10.1016/j.rse.2010.07.015

    Article  Google Scholar 

  • Schlund, M., & Davidson, M. W. J. (2018). Above ground forest biomass estimation combining L- and P-Band SAR acquisitions. Remote Sensing, 10(7), 1151–1174. https://doi.org/10.3390/rs10071151

    Article  Google Scholar 

  • Small, D. (2011). Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3081–3093. https://doi.org/10.1109/TGRS.2011.2120616

    Article  Google Scholar 

  • Soja, M. J., Quegan, S., Alessandro, M. M. D., Banda, F., Scipal, K., Tebaldini, S., & Ulander, L. M. H. (2020). Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data. Remote Sensing of Environment, 253, 1153–1169. https://doi.org/10.1016/j.rse.2020.112153

    Article  Google Scholar 

  • Tavakoli, A., Sarabandi, K., & Ulaby, F. T. (1993). Microwave propagation constant for a vegetation canopy at X band. Radio Science, 28(4), 549–558. https://doi.org/10.1029/92RS02456

    Article  Google Scholar 

  • Tsang, L., & Kong, J. (1981). Application of strong fluctuation random medium theory on scattering from vegetation-like half space. IEEE Transactions on Geoscience and Remote Sensing, GE-19(1), 62-69. https://doi.org/10.1109/TGRS.1981.350329

  • Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing: active and passive, from theory to application. Norwood, MA, USA: Artech House.

    Google Scholar 

  • Ulaby, F. T., Sarabandi, K., Mcdonald, K., Whitt, M., & Dobson, M. C. (1990). Michigan microwave canopy scattering model. International Journal of Remote Sensing, 11(7), 1223–1253. https://doi.org/10.1080/01431169008955090

    Article  Google Scholar 

  • UNFCCC. (2016, January 29). Report of the conference of the parties on its twenty-first session, held in Paris from 30 November to 13 December 2015. United Nations Digital Library. Retrieved August 9, 2023, from https://digitallibrary.un.org/record/831052?ln=en

  • Vaghela, B., Chirakkal, S., Putrevu, D., & Solanki, H. (2021). Modelling above ground biomass of Indian mangrove forest using dual-pol SAR data. Remote Sensing Applications: Society and Environment, 21, 100457. https://doi.org/10.1016/j.rsase.2020.100457

    Article  Google Scholar 

  • Verkerk, P. J., Mavsar, R., Giergiczny, M., Lindner, M., Edwards, D., & Schelhaas, M. J. (2014). Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests. Ecosystem Services, 9, 155–165. https://doi.org/10.1016/j.ecoser.2014.06.004

    Article  Google Scholar 

  • Wait, J. R. (1955). Scattering plane wave from a circular dielectric cylinder at oblique incidence. Canadian Journal of Physics, 33(5), 189–195. https://doi.org/10.1139/p55-024

    Article  Google Scholar 

  • Wait, J. R. (1959). Electromagnetic radiation from cylindrical structure. Pergamon Press.

    Google Scholar 

  • Wagner, W., Luckman, A., Vietmeier, J., Tansey, K., Balzter, H., Schmullius, C., Davidson, M., Gaveau, D., Gluck, M., Le Toan, T., Quegan, S., Shvidenko, A., Wiesmann, A., & Yu, J. J. (2003). Large-scale mapping of boreal forest in Siberia using ERS tandem coherence and JERS backscatter data. Remote Sensing of Environment, 85(2), 125–144. https://doi.org/10.1016/S0034-4257(02)00198-0

    Article  Google Scholar 

  • Wang, C., & Qi, J. (2008). Biophysical estimation in tropical forests using JERS-1 SAR and VNIR imagery. II. Aboveground woody biomass. International Journal of Remote Sensing, 29(23), 6827–6849. https://doi.org/10.1080/01431160802270123

    Article  Google Scholar 

  • Wang, Y. (2010). Quantitative remote sensing inversion in earth science: Theory and numerical treatment. In W. Freeden, M. Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 785–812). Springer.

    Chapter  Google Scholar 

  • Yebra, M., Dennison, P. E., Chuvieco, E., Riano, D., Zylstra, P., Hunt, P., Danson, E. R., Qi, F. M., & Jurdao, S. (2013). A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 136, 455–468. https://doi.org/10.1016/j.rse.2013.05.029

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Japanese Space Exploration Agency (JAXA) for providing ALOS-2 data under the research agreement and to National Remote Sensing Centre, ISRO for providing NovaSAR data.

Funding

This research was funded by the Space Application Centre, ISRO as part of the L &S airborne RA Scheme.

Author information

Authors and Affiliations

Authors

Contributions

Faseela V. Sainuddin: conceptualization, data collection, data curation, software, interpretation, visualization, writing the original draft, and revising and editing the manuscript. Sanid Chirakkal: conceptualization, data collection, validation, and revising and editing the manuscript. Smitha V. Asok: data collection, supervision, validation, and revising and editing the manuscript. Anup Kumar Das: project administration, funding acquisition, and revising and editing the manuscript. Deepak Putrevu: supervision and revising and editing the manuscript.

Corresponding author

Correspondence to Faseela V. Sainuddin.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sainuddin, F.V., Chirakkal, S., Asok, S.V. et al. Evaluation of multifrequency SAR data for estimating tropical above-ground biomass by employing radiative transfer modeling. Environ Monit Assess 195, 1102 (2023). https://doi.org/10.1007/s10661-023-11715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11715-7

Keywords

Navigation