Skip to main content

Advertisement

Log in

Soil erosion estimation by RUSLE model using GIS and remote sensing techniques: A case study of the tertiary hilly regions in Bangladesh from 2017 to 2021

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil erosion is one of the major environmental threats in Bangladesh, especially in the tertiary hilly regions located in the northeastern and southeastern parts of the country. The revised universal soil loss equation (RUSLE), combined with Geographic Information System, is a reliable methodology to estimate the potential soil loss in an area. This research aimed to use the RUSLE model to estimate the soil erosion in the tertiary hill tracts of Bangladesh from 2017 to 2021. The erosivity factor was determined from the annual average precipitation, and erodibility factor was estimated from FAO soil database. The elevation model was used to analyze slope length steepness factors, while land use land cover was used to compute cover management factor. Lastly, land use and elevation were integrated to estimate the support practice factor. Results revealed that the potential mean annual soil loss in 2017, 2019, and 2021 was 68.77, 69.84, and 83.7 ton ha−1 year−1 from northeastern and 101.72, 107.83, and 114.04 ton ha−1 year−1 from southeastern region, respectively. Although total annual rainfall was high in 2017, soil loss was found higher in 2021 which indicates the impact of land use change on erosion. This investigation will help the policymakers to identify the erosion-vulnerable areas in the hill tracts that require immediate soil conservation practices. Additionally, there is no latest field-based data available for the country for the validation, and hence, it is recommended to conduct field-based studies for validating the model-derived results and creating a reliable soil erosion database for the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw data used to support the findings of this study are available from the corresponding author upon request.

References

  • Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7(3), 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  • Auerswald, K., Fiener, P., Martin, W., & Elhaus, D. (2014). Use and misuse of the K factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. CATENA, 118, 220–225. https://doi.org/10.1016/J.CATENA.2014.01.008

    Article  Google Scholar 

  • Azad, M. A. K. (2001). Study on the prediction of sediment yield from the hilly catchment Chittagong tracts. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/250

  • Babu, R., Dhyani, B. L., & Kumar, N. (2004). Assessment of erodibility status and refined Iso-Erodent Map of India. Indian Journal of Soil Conservation, 32(2), 171–177.

    Google Scholar 

  • Bangladesh Finance Bureau. (2014). Agricultural Statistics. Ministry of Agriculture, Government of the People’s Republic of Bangladesh.

  • Behera, M., Sena, D. R., Mandal, U., Kashyap, P. S., & Dash, S. S. (2020). Integrated GIS-based RUSLE approach for quantification of potential soil erosion under future climate change scenarios. Environmental Monitoring and Assessment, 192(11), 1–18. https://doi.org/10.1007/s10661-020-08688-2

  • Biddoccu, M., Guzman, G., Capello, G., Thielke, T., Strauss, P., Winter, S., et al. (2020). Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. International Soil and Water Conservation Research, 8(4), 337–353. https://doi.org/10.1016/j.iswcr.2020.07.003

    Article  Google Scholar 

  • Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C. et al. (2021). Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 780, 146494. https://doi.org/10.1016/j.scitotenv.2021.146494

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C. et al. (2013). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8, 2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  CAS  Google Scholar 

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C. et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8, 2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  CAS  Google Scholar 

  • Chen, S., Zha, X., Bai, Y., & Wang, L. (2019). Evaluation of soil erosion vulnerability on the basis of exposure, sensitivity, and adaptive capacity: A case study in the Zhuxi watershed, Changting, Fujian Province, southern China. Catena, 177, 57–69. https://doi.org/10.1016/j.catena.2019.01.036

    Article  Google Scholar 

  • Chowdhury, M., Hasan, M. E., & Mamun, M. M. A. A. (2018). Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Sciences, 23(1), 63–75. https://doi.org/10.1016/j.ejrs.2018.11.003

    Article  Google Scholar 

  • Das, S., Bora, P. K., & Das, R. (2022). Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Modeling Earth Systems and Environment, 8, 1171–1177. https://doi.org/10.1007/s40808-021-01153-0

    Article  Google Scholar 

  • Deininger, K., Byerlee, D., Lindsay, J., Norton, A., Selod, H., & Stickler, M. (2011). Rising global interest in farmland: Can it yield sustainable and equitable benefits? Washington DC, USA: World Bank, 2011 Report Number: 59463.

  • Farhad, H., Kamal, A. S. M. M., Sadeak, S., & Gazi, M. Y. (2022). Quantitative soil erosion risk assessment due to rapid urbanization inthe Cox’s Bazar district and Rohingya refugee camps in Bangladesh. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-022-02314-y

  • Farhan, Y., & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environmental Earth Science, 74(6), 4649–4669. https://doi.org/10.1007/s12665-015-4430-7

  • Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture. IIASA, Laxenburg, Austria and FAO, Rome, Italy.

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007

    Article  Google Scholar 

  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4, 126–136. https://doi.org/10.1016/j.iswcr.2016.01.002

    Article  Google Scholar 

  • Ghosal, K., & Bhattacharya, S. D. (2020). A review of RUSLE Model. Journal of the Indian Society of Remote Sensing, 48, 689–707. https://doi.org/10.1007/s12524-019-01097-0

    Article  Google Scholar 

  • Goldman, S. J., Jackson, K., & Bursztynsky, T. A. (1986). Erosion and sediment control handbook. McGraw Hill, 5(1–5), 32.

    Google Scholar 

  • Hasan, M. K., & Alam, A. A. (2006). Land degradation situation in Bangladesh and role of agroforestry. Journal of Agriculture & Rural Development, 4(1), 19–25.

    Article  Google Scholar 

  • Hasan, M.N., Bari, M.A., & Lutfar, M.R. (2020). Soil fertility trends in Bangladesh 2010 to 2020. SRSRF project. Soil Resource Development Institute, Ministry of Agriculture, Dhaka, Bangladesh.

  • Hassan, M. M. (2017). Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society and Environment, 7, 69–83. https://doi.org/10.1016/j.rsase.2017.07.00

    Article  Google Scholar 

  • Hossain, F., Kamal, A. S. M. M., Sadeak, S., & Gazi, M. Y. (2023). Quantitative soil erosion risk assessment due to rapid urbanization inthe Cox’s Bazar district and Rohingya refugee camps in Bangladesh. Stochastic Environmental Research and Risk Assessment, (2022). https://doi.org/10.1007/s00477-022-02314-y

  • Hrabalíková, M., & Janeček, M. (2017). Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil and Water Research, 12(2), 69–77. https://doi.org/10.17221/222/2015-SWR

  • Islam, M.A., Islam, M. S., & Islam, T. (2017). Landslides in Chittagong hill tracts and possible measures. In: Proceedings of the international conference on disaster risk mitigation, Dhaka, Bangladesh, pp: 23–24.

  • Islam, M. R., Jaafar, W. Z. W., Hin, L. S., Osman, N., & Karim, M. R. (2020). Development of an erosion model for Langat river basin, Malaysia, adapting GIS and RS in RUSLE. Applied Water Science, 10(7), 1–11. https://doi.org/10.1007/s13201-020-01185-4

  • Kaiser, J. (2004). Wounding Earth’s fragile skin. Science, 304, 1616–1618. https://doi.org/10.1126/science.304.5677.1616

    Article  CAS  Google Scholar 

  • Kefi, M., Yoshino, K., Setiawan, Y., Zayani, K., & Boufaroua, M. (2011). Assessment of the effects of vegetation on soil erosion risk by water: A case of study of the Batta watershed in Tunisia. Environment and Earth Science, 64, 707–719. https://doi.org/10.1007/S12665-010-0891-X/FIGURES/4

    Article  Google Scholar 

  • Khan, M.Z., & Shoumik, B. A. A. (2022). Land degradation neutrality concerns in Bangladesh. Soil Security, 9:100075. https://doi.org/10.1016/j.soisec.2022.100075

  • Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M. (2015). Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems & Environment, 203, 127–139. https://doi.org/10.1016/j.agee.2015.01.027

    Article  Google Scholar 

  • Laflen, J. M., & Moldenhauer, W. C. (2003). Pioneering soil erosion prediction: the USLE story (p. 54) Beijing, China: World Association of Soil and Water Conservation.

  • Lazzari, M., Gioia, D., Piccarreta, M., Danese, M., & Lanorte, A. (2015). Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): A comparison between different empirical methods. Catena, 127, 323–339. https://doi.org/10.1016/j.catena.2014.11.021

    Article  Google Scholar 

  • Liu, B., Zhang, K., & Xie, Y. (2002). An empirical soil loss equation. Proc. 12th ISCO Conf. pp: 21–25. Available at: https://www.tucson.ars.ag.gov/isco/isco12/VolumeII/AnEmpiricalSoilLossEquation.pdf

  • Masum, K. M., & Hasan, M. M. (2020). Assessment of land cover changes from protected forest areas of Satchari national park in Bangladesh and implications for conservation. Journal of Environmental Science, 36(3), 199–206. https://doi.org/10.7747/JFES.2020.36.3.199

    Article  Google Scholar 

  • Moore, I. D., & Burch, G. J. (1986). Physical Basis of the Length Slope Factor in the Universal Soil Loss Equation., 50(5), 1294–1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x

    Article  Google Scholar 

  • Morgan, R. P. C. (2005). Soil erosion and conservation (3rd ed.). Blackwell Publishing.

    Google Scholar 

  • Morgan, R. P. C., & Nearing, M. A. (2011). Handbook of erosion modelling. Handbook of erosion modelling. Wiley-Blackwell, New Jersey.

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K. et al. (1998). The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3c527::AID-ESP868%3e3.0.CO;2-5

    Article  Google Scholar 

  • Nath, T., Inoue, M., & Myant, H. (2005). Small-scale agroforestry for upland community development: A case study from Chittagong Hill Tracts, Bangladesh. Journal of Forest Research, 10(6), 443–452. https://doi.org/10.1007/s10310-005-0171-x

    Article  Google Scholar 

  • Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of ASAE, 32(5), 1587–1593.

    Article  Google Scholar 

  • Nearing, M. A., Romkens, M. J. M., Norton, L. D., Stott, D. E., Rhoton, F. E., Laflen, J. M. et al. (2000). Measurements and models of soil loss rates. Science, 290, 1300–1301.

    Article  CAS  Google Scholar 

  • Negese, A. (2021). Impacts of land use and land cover change on soil erosion and hydrological responses in Ethiopia. Applied and Environmental Soil Science, 2021, 6669438. https://doi.org/10.1155/2021/6669438

    Article  Google Scholar 

  • Nira, R. (2021). Application of the revised universal soil loss equation to develop a management plan in the Chittagong Hill Tracts Region of Bangladesh. City University of New York. Available at: https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1018&context=le_etds

  • Owens, P. N., & Collins, A. J. (2006). Soil erosion and sediment redistribution in river catchments: Measurement, modelling and management in the 21st Century. CABI.

  • Pimentel, D. (2006). Soil erosion: A food and environmental threat. Environment Development and Sustainability, 8(1), 119e137. https://doi.org/10.1007/s10668-005-1262-8

  • Prasannakumar, V., Shiny, R., Geetha, N., & Vijith, H. (2011). Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: A case study of Siruvani river watershed in Attapady valley, Kerala, India. Environmental Earth Science, 64(4), 965–972. https://doi.org/10.1007/s12665-011-0913-3

    Article  Google Scholar 

  • Qiu, H., Cui, P., Regmi, A. D., Hu, S., Wang, X., & Zhang, Y. (2018). The effects of slope length and slope gradient on the size distributions of loess slides: Field observations and simulations. Geomorphology, 300, 69e76. https://doi.org/10.1016/j.geomorph.2017.10.020

  • Rai, R., Zhang, Y., Paudel, B., Li, S., & Khanal, N. R. (2017). A synthesis of studies on land use and land cover dynamics during 1930–2015 in Bangladesh. Sustainability, 9(10), 1866. https://doi.org/10.3390/su9101866

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, D. K., & Yoder, D. C. (1997). Predicting soil loss by water: A guide to conservation planning with the revised soil loss equation (RUSLE), U. S. 14 Appl. Environ. Soil Sci. Department of Agriculture, no. 2, pp. 11–23, Washington DC, USA.

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Robinson, D. A., Panagos, P., Borrelli, P., Jones, A., Montanarella, L., Tye, A., & Obst, C. G. (2017). Soil natural capital in Europe; A framework for state and change assessment. Science and Reports, 7(1), 6706. https://doi.org/10.1038/s41598-017-06819-3

    Article  CAS  Google Scholar 

  • Saha, M., Sauda, S. S., Real, H. R. K., & Mahmud, M. (2022). Estimation of annual rate and spatial distribution of soil erosion in theJamuna basin using RUSLE model: A geospatial approach. Environmental Challenges, 8, 100524. https://doi.org/10.1016/j.envc.2022.100524

  • Shaheed, S. M. (1995). Country report, Bangladesh, the collection and analysis of land degradation data. Bangkok RAPA publication: 1994/3.

  • Shinde, V., Tiwari, K. N., & Singh, M. (2010). Prioritization of micro watersheds on the basis of soil erosion hazard using remote sensing and geographic information system. International Journal of Water Resources and Environmental Engineering, 2(3), 130–136.

    Google Scholar 

  • Shoumik, B. A. A., & Islam, M. S. (2022). Vertical distribution of soil aggregates and associated organic carbon fractions under conventional vegetable- and rice-based tillage operations. Soil Research, SR22069. https://doi.org/10.1071/SR22069

  • Shoumik, B. A. A., & Islam, M. S. (2020). Soil erosion and its effects on maize field as modified by amendments in southwestern coastal Bangladesh. International Journal of Environment, 9(2), 120–132. https://doi.org/10.3126/ije.v9i2.32539

    Article  Google Scholar 

  • Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed. India. International Soil and Water Conservation Research, 5(3), 202–211. https://doi.org/10.1016/j.iswcr.2017.05.006

    Article  Google Scholar 

  • Soil Resource Development Institute (SRDI). (1986). Reconnaissance soil and land use survey. Chittagong Hill Tracts 1964–1965.

  • Sun, P., Wu, Y., Wei, X., Sivakumar, B., Qiu, L., Mu, X. et al. (2020). Quantifying the contributions of climate variation, land use change, and engineering measures for dramatic reduction in streamflow and sediment in a typical loess watershed, China. Ecological Engineering, 142(1), 105611. https://doi.org/10.1016/j.ecoleng.2019.105611

  • Tamene, L., Adimassu, Z., Aynekulu, E., & Yaekob, T. (2017). Estimating landscape susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia. International Soil and Water Conservation Research, 5(3), 221–230. https://doi.org/10.1016/j.iswcr.2017.05.002

    Article  Google Scholar 

  • Tian, P., Pan, C., Xu, X., Wu, T., Yang, T., & Zhang, L. (2020). A field investigation on rill development and flow hydrodynamics under different upslope inflow and slope gradient conditions. Hydrology Research, 51(5), 1201–1220. https://doi.org/10.2166/nh.2020.168

    Article  CAS  Google Scholar 

  • Wang, B., Zheng, F., Römkens, M. J. M., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1–10. https://doi.org/10.1016/J.GEOMORPH.2013.01.018

    Article  Google Scholar 

  • Wang, Z., & Su, Y. (2020). Assessment of soil erosion in the Qinba Mountains of the southern Shaanxi Province in China using the RUSLE model. Sustainability, 12(5), 1733. https://doi.org/10.3390/su12051733

    Article  Google Scholar 

  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.

  • Xu, S., Liu, Y., Gong, J., Wang, C., & Wang, Z. (2020). Comparing differences among three ecosystem service proxies for soil erosion prevention and their combination characteristics at local scales. Ecolological Indicators, 110, 105929. https://doi.org/10.1016/j.ecolind.2019.105929

Download references

Author information

Authors and Affiliations

Authors

Contributions

Baig Abdullah Al Shoumik: conceptualization, data curation, formal data analysis, visualization, writing—original draft and editing. Md. Zulfikar Khan: conceptualization, investigation, validation, writing—review and editing, and supervision. Md. Sanaul Islam: writing—review and editing.

Corresponding author

Correspondence to Baig Abdullah Al Shoumik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Shoumik, B.A., Khan, M.Z. & Islam, M.S. Soil erosion estimation by RUSLE model using GIS and remote sensing techniques: A case study of the tertiary hilly regions in Bangladesh from 2017 to 2021. Environ Monit Assess 195, 1096 (2023). https://doi.org/10.1007/s10661-023-11699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11699-4

Keywords

Navigation