Skip to main content

Advertisement

Log in

Predicting potential reforestation areas by Quercus ilex (L.) species using machine learning algorithms: case of upper Ziz, southeastern Morocco

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The selection of appropriate areas for reforestation remains a complex task because of influence by several factors, which requires the use of new techniques. Based on the accurate outcomes obtained through machine learning in prior investigations, the current study evaluates the capacities of six machine learning techniques (MLT) for delineating optimal areas for reforestation purposes specifically targeting Quercus ilex, an important local species to protect soil and water in upper Ziz, southeast Morocco. In the initial phase, the remaining stands of Q. ilex were identified, and at each site, measurements were taken for a set of 12 geo-environmental parameters including slope, aspect, elevation, geology, distance to stream, rainfall, slope length, plan curvature, profile curvature, erodibility, soil erosion, and land use/land cover. Subsequently, six machine learning algorithms were applied to model optimal areas for reforestation. In terms of models’ performance, the results were compared, and the best were obtained by Bagging (area under the curve (AUC) = 0.98) and Naive Bayes (AUC = 0.97). Extremely favorable areas represent 8% and 17% of the study area according to Bagging and NB respectively, located to the west where geological unit of Bathonian-Bajocian with low erodibility index (K) and where rainfall varies between 250 and 300 mm/year. This work provides a roadmap for decision-makers to increase the chances of successful reforestation at lower cost and in less time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the results of this research are available from the corresponding author upon request.

References

  • Abdullah, S., & Barua, D. (2022). Combining Geographical Information System (GIS) and machine learning to monitor and predict vegetation vulnerability: an empirical study on Nijhum Dwip, Bangladesh. Ecological Engineering, 178, 106577. https://doi.org/10.1016/j.ecoleng.2022.106577

    Article  Google Scholar 

  • Al-Abadi, A. M. (2018). Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arabian Journal of Geosciences, 11, 218. https://doi.org/10.1007/s12517-018-3584-5

    Article  Google Scholar 

  • Ali, S. A., Mohajane, M., Parvin, F., Varasano, A., Hitouri, S., Łupikasza, E., & Pham, Q. B. (2023). Mass movement susceptibility prediction and infrastructural risk assessment (IRA) using GIS-based Meta classification algorithms. Applied Soft Computing, 110591. https://doi.org/10.1016/j.asoc.2023.110591

  • Amimi, N., Ghouil, H., Zitouna-Chebbi, R., Joët, T., & Ammari, Y. (2023). Intraspecific variation of Quercus ilex L. seed morphophysiological traits in Tunisia reveals a trade-off between seed germination and shoot emergence rates along a thermal gradient. Annals of Forest Science, 80(1), 1–16.

    Article  Google Scholar 

  • Arahou, M. (2008). Catalogue de l’entomofaune du Chêne vert du Moyen Atlas (Maroc). Institut Scientifique. Available online from the link http://delphacid.s3.amazonaws.com/8980.pdf. Accessed 10 Mar 2023

  • Avand, M., Moradi, H., & Ramazanzadeh Lasboyee, M. (2021). Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan Watershed, Iran. Advances in Space Research. https://doi.org/10.1016/j.asr.2021.02.011

  • Barbero, M., Loisel, R., & Quezel, P. (1992). Biogeography, ecology and history of Quercus ilex ecosystems in Mediterranean region. Vegetatio, 99(100), 14–19.

    Google Scholar 

  • Benia, F. (2018). Étude de la faune entomologique associée au chêne vert (Quercus ilex L.) dans la forêt de Tafat (Sétif, Nord-est d’Algérie) et bio-écologie des espèces les plus représentatives (Doctoral dissertation). Available online from the link. http://dspace.univsetif.dz:8888/jspui/bitstream/123456789/2412/1/these%20finale%20lce_moh_31%20%282%29.pdf. Accessed 04 Mar 2023

  • Berens, P., Cranmer, K., Lawrence, N. D., von Luxburg, U., & Montgomery, J. (2023). AI for Science: an emerging agenda. arXiv preprint arXiv:2303.04217. https://doi.org/10.48550/arXiv.2303.04217

  • Boudy, P. (1950). Economie forestiere Nord-Africaine. Tome (2) Fasc.1 (p. 525). Monographie et traitement des essences forestières. Ed. Larose https://agris.fao.org/agris. Accessed 08 Jan 2023

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Bunruamkaew, K., & Murayama, Y. (2012). Land use and natural resources planning for sustainable ecotourism using GIS in Surat Thani, Thailand. Sustainability, 4, 412–429. https://doi.org/10.3390/su4030412

    Article  Google Scholar 

  • Cabrera-Puerto, R. J., Ruiz-Gómez, F. J., & Navarro-Cerrillo, R. M. (2023). Beneficial microorganisms and water stress influence Quercus ilex seedlings’ response to Phytophthora cinnamomi Rands. Forests, 14(5), 870. https://doi.org/10.3390/f14050870

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks, 4, 341–342. https://doi.org/10.1109/icnn.1991.163370

    Article  Google Scholar 

  • Choi, Y., Lim, C. H., Krasovskiy, A., Platov, A., Kim, Y., Chung, H. I., et al. (2022). Can a national afforestation plan achieve simultaneous goals of biodiversity and carbon enhancement? Exploring optimal decision making using multi-spatial modeling. Biological Conservation, 267, 109474. https://doi.org/10.1016/j.biocon.2022.109474

    Article  Google Scholar 

  • Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40(2), 139–157. https://doi.org/10.1023/A:1007607513941

    Article  Google Scholar 

  • DREFLCD 2022 (Direction regionale des eaux et forets et lutte contre la desertification (DREFLCD). Available from: http://www.eauxetforets.gov.ma/ForetsMarocaines/ForetsChiffres/Pages/Forets-En-Chiffres.aspx [accessed 04 Mai 2022].

  • Fenjiro, I., Zouagui, A., & Manaouch, M. (2020). Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Ziz Upper Basin Southeast Morocco. Forum Geografic, 19(2), 131–142.

    Article  Google Scholar 

  • Fernández i Marti, A., Romero-Rodríguez, C., Navarro-Cerrillo, R. M., Abril, N., Jorrín-Novo, J. V., & Dodd, R. S. (2018). Population genetic diversity of Quercus ilex subsp. ballota (Desf.) Samp. Reveals divergence in recent and evolutionary migration rates in the Spanish Dehesas. Forests, 9, 337.

    Article  Google Scholar 

  • Guzmán-Castillo, S., Körner, F., Pantoja-García, J. I., Nieto-Ramos, L., Gómez-Charris, Y., Castro-Sarmiento, A., & Romero-Conrado, A. R. (2022). Implementation of a predictive information system for university dropout prevention. Procedia Computer Science, 198, 566–571. https://doi.org/10.1016/j.procs.2021.12.287

    Article  Google Scholar 

  • Handhal, A. M., Ettensohn, F. R., Al-Abadi, A. M., & Ismail, M. J. (2022). Spatial assessment of gross vertical reservoir heterogeneity using geostatistics and GIS-based machine-learning classifiers: a case study from the Zubair Formation, Rumaila oil field, southern Iraq. Journal of Petroleum Science and Engineering, 208, 109482. https://doi.org/10.1016/j.petrol.2021.109482

    Article  CAS  Google Scholar 

  • Hashemi, S. A., Firozan, A. H., Tabibian, S., Sahmani, R. (2019). Selection of potential plantations for Buxus hyrcana Pojark using GIS near coastline of Caspian Sea in North of Iran. http://nopr.niscair.res.in/handle/123456789/47408. Accessed 08 Mar 2023

  • Henkrar, F., Meyad, C., Oikrim, M., Bouhaddou, N., & Khabar, L. (2023). Updating ecology and distribution of wild truffles in Morocco. Forests, 14(5), 952.

    Article  Google Scholar 

  • Imad, F., Anis, Z., & Mohamed, M. (2021). Assessment of the effects of land use/land cover changes on soil loss and sediment yield using WaTEM/SEDEM model: case study of ziz upper watershed in SE-Morocco. Current Applied Science and Technology, 21, 337–350. https://li01.tci-thaijo.org/index.php/cast/article/view/247959. Accessed 20 Dec 2022

  • Jing, L., & Hudson, J. (2002). Numerical method in rock engineering. International Journal of Rock Mechanics and Mining Sciences, 39, 409–427. https://doi.org/10.1016/S1365-1609(02)00065-5

    Article  Google Scholar 

  • Khaliq, A. H., Basharat, M., Riaz, M. T., Riaz, M. T., Wani, S., Al-Ansari, N., et al. (2023). Spatiotemporal landslide susceptibility mapping using machine learning models: a case study from district Hattian Bala, NW Himalaya, Pakistan. Ain Shams Engineering Journal, 14(3), 101907.

    Article  Google Scholar 

  • Keesstra, S., Mol, G., de Leeuw, J., Okx, J., Molenaar, C., de Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land, 7, 133. https://doi.org/10.3390/land7040133

    Article  Google Scholar 

  • Laaribya, S., Alaoui, A., Ayan, S., Benabou, A., Labbaci, A., Ouhaddou, H., & Bijou, M. (2021). Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. Forestist, 71(2), 63–69.

    Article  Google Scholar 

  • Manaouch, M., Sadiki, M., & Fenjiro, I. (2021). Integrating GIS-based FAHP and WaTEM/SEDEM for identifying potential RWH areas in semi-arid areas. Geocarto International, 1–24. https://doi.org/10.1080/10106049.2021.2007295

  • Manaouch, M., Sadiki, M., Aghad, M., Batchi, M., & Al Karkouri, J. (2021). Landslide susceptibility mapping using machine learning techniques and comparison of their performance at Ziz upper watershed, Southeastern Morocco. https://doi.org/10.21203/rs.3.rs-1534262/v1

    Book  Google Scholar 

  • Mohamed, M., Anis, Z., & Imed, F. (2020). Regional-scale modeling of water erosion and sediment yield in a semi-arid context: a case study of Ziz upper watershed in south-eastern Morocco. In GEOIT4W-2020: Proceedings of the 4th Edition of International Conference on GeoIT and Water Resources 2020, Al Hoceima, Morocco, March 11 -12, 2020. https://doi.org/10.1145/3399205.3399209

    Chapter  Google Scholar 

  • Moradi, M. J., Kiadaliri, H., Kafaky, S. B., & Bakhoda, H. (2023). Investigation of the efficiency of MaxEnt, topsis and invest models on site suitability and decline potential of Persian oak forests in Zagros, Iran (Ilam Province). CERNE, 29, e103135.

    Article  Google Scholar 

  • Narulita, S., Zain, A. F. M., & Prasetyo, L. B. (2016). Geographic information system (GIS) application on urban forest development in Bandung City. Procedia Environmental Sciences, 33, 279–289. https://doi.org/10.1016/j.proenv.2016.03.079

    Article  Google Scholar 

  • Navas, A., Machin, J., & Gaspar, L. (2009). Les sols dans le pays du Ziz (Sud-est marocain), caractéristiques et aspects de. Applied Geography, 20, 369–394.

    Google Scholar 

  • Pham, B. T., Bui, D. T., Dholakia, M. B., Prakash, I., Pham, H. V., Mehmood, K., & Le, H. Q. (2017). A novel ensemble classifier of rotation forest and Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomatics, Nat. Hazards Risk, 8, 649–671. https://doi.org/10.1080/19475705.2016.1255667

    Article  Google Scholar 

  • Phong, T. V., et al. (2019). Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district. Vietnam. Geocarto International, 36(15), 1685–1708. https://doi.org/10.1080/10106049.2019.1665715

    Article  Google Scholar 

  • Punlumjeak, W., Rugtanom, S., Jantarat, S., & Rachburee, N. (2017). Improving classification of imbalanced student dataset using ensemble method of voting, bagging, and adaboost with under-sampling technique. Lecture Notes in Electrical Engineering, 449, 27–34. https://doi.org/10.1007/978-981-10-6451-7_4

    Article  Google Scholar 

  • Rebbas, K., Heddad, M., Said, Z. B. S., Haddad, S., & Véla, E. (2023). Les Orchidées du Parc National de Djurdjura (Grande Kabylie, Algérie) sur 17 années-Inventaire, Taxonomie et Biogéographie. Journal Europäischer Orchideen, 55(1), 99.

    Google Scholar 

  • Sarkar, R., & Somenahally, A. (2023). Machine learning soil-environmental impacts on agroecosystems for relating microbial biomass to soil carbon sequestration. Smart Agricultural Technology, 4, 100208.

    Article  Google Scholar 

  • Seigue, A. (1985). La forêt circumméditerranéenne et ses problèmes (pp. 82–91). Ed. Maisonneuve et Larose.

    Google Scholar 

  • Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl, K. C., Jr. (2017). Data mining for business analytics: concepts, techniques, and applications in R. John Wiley & Sons http://lccn.loc.gov/2015040496

    Google Scholar 

  • Singh, S. K., Taylor, R. W., Pradhan, B., Shirzadi, A., & Pham, B. T. (2022). Predicting sustainable arsenic mitigation using machine learning techniques. Ecotoxicology and Environmental Safety, 232, 113271. https://doi.org/10.1016/j.ecoenv.2022.113271

    Article  CAS  Google Scholar 

  • Soria, D., Garibaldi, J. M., Ambrogi, F., Biganzoli, E. M., & Ellis, I. O. (2011). A ‘non-parametric’version of the naive Bayes classifier. Knowledge-Based Systems, 24, 775–784. https://doi.org/10.1016/j.knosys.2011.02.014

    Article  Google Scholar 

  • Souad, E. M., & Bendriss Amraoui, M. (2020). Effect of soil properties on growth of Quercus ilex L. in humid and cold mountains of Morocco. Applied and Environmental Soil Science, 2020, 1–9. https://doi.org/10.1155/2020/8869975

    Article  CAS  Google Scholar 

  • Tsiaras, S., & Dragoslis, A. (2020). Selection of the most suitable tree species for truffle cultivation using fuzzy VIKOR and fuzzy AHP: new paths in forest policy planning. International Journal of Environmental Sustainability and Green Technologies (IJESGT), 11(1), 74–91.

    Article  Google Scholar 

  • Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H., & Hong, H. (2020). Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena, 187, 104396. https://doi.org/10.1016/j.catena.2019.104396

    Article  Google Scholar 

  • Yariyan, P., Avand, M., Abbaspour, R. A., Karami, M., & Tiefenbacher, J. P. (2020). GISbased spatial modeling of snow avalanches using four novel ensemble models. Science of The Total Environment, 745, 141008. https://doi.org/10.1016/j.scitotenv.2020.141008

    Article  CAS  Google Scholar 

  • Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38, 5958–5966. https://doi.org/10.1016/j.eswa.2010.11.027

    Article  Google Scholar 

  • Yousefi, S., Avand, M., Yariyan, P., Goujani, H. J., Costache, R., Tavangar, S., & Tiefenbacher, J. P. (2021). Identification of the most suitable afforestation sites by Juniperus excels specie using machine learning models: Firuzkuh semi-arid region, Iran. Ecological Informatics, 65, 101427. https://doi.org/10.1016/j.ecoinf.2021.101427

    Article  Google Scholar 

  • Yousefi, S., Pourghasemi, H. R., Avand, M., Janizadeh, S., Tavangar, S., & Santosh, M. (2020). Assessment of land degradation using machine-learning techniques: a case of declining rangelands. Land Degradation & Development, 32(3), 1452–1466. https://doi.org/10.1002/ldr.3794

    Article  Google Scholar 

  • Zeng, W., Chin, S.-C., Zeimet, B., Kuang, R., & Chi, C.-L. (2017). Dropout prediction in home care training. In Proc. 10th Int. Conf. Educ. Data Mining (pp. 442–443). EDM.

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Guir-Ziz-Rhris watershed agency for the facilities and data provided during this study. The authors would like to thank Mr. N. Khan for his valuable help during the validation step.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mohamed Manaouch; methodology and software processing: Anis Zouagui; data curation and writing—original draft: Mohamed Manaouch; visualization and investigation: Mohcine Batchi; supervision and validation: Mohamed Sadiki and Jamal Al Karkouri; writing—review and editing: Quoc Bao Pham.

Corresponding author

Correspondence to Mohamed Manaouch.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manaouch, M., Sadiki, M., Pham, Q.B. et al. Predicting potential reforestation areas by Quercus ilex (L.) species using machine learning algorithms: case of upper Ziz, southeastern Morocco. Environ Monit Assess 195, 1094 (2023). https://doi.org/10.1007/s10661-023-11680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11680-1

Keywords

Navigation