Skip to main content

Advertisement

Log in

Prediction of soil salinity in the Upputeru river estuary catchment, India, using machine learning techniques

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil salinization is a widespread phenomenon leading to land degradation, particularly in regions with brackish inland aquaculture ponds. However, because of the high geographical and temporal fluctuation, monitoring vast areas provides substantial challenges. This study uses remote sensing data and machine learning techniques to predict soil salinity. Four linear models, namely linear regression, least absolute shrinkage and selection operator (LASSO), ridge, and elastic net regression, and three boosting algorithms, namely XGB regressor, LightGBM, and CatBoost regressor, were used to predict soil salinity. Cross-validation was performed by splitting the data into 30% for model testing and 70% for model training. Multiple metrics such as determination coefficient (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) were used to compare the performances of these algorithms. By comparison, the CatBoost regressor model performed better than the other models in both testing (MAE = 0.42, MSE = 0.28, RMSE = 0.53, R2 = 0.92) and training (MAE = 0.49, MSE = 0.36, RMSE = 0.60, R2 = 0.90) phases. Hence, the CatBoost regressor model was recommended for monitoring soil salinity in India’s massive inland aquaculture zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alisha, S. S., Nagaraju, T. V., Onyelowe, K. C., Dumpa, V., & Sireesha, M. (2022). Prediction of strength and stiffness behavior of glass powder stabilized expansive clay using ANN principles. In International Conference on Trends and Recent Advances in Civil Engineering (pp. 211–219). Singapore.

    Google Scholar 

  • Ansah, C. E., Abu, I. O., Kleemann, J., Mahmoud, M. I., & Thiel, M. (2022). Environmental contamination of a biodiversity hotspot—Action needed for nature conservation in the Niger Delta, Nigeria. Sustainability, 14(21), 14256.

    Article  Google Scholar 

  • Balderacchi, M., Benoit, P., Cambier, P., Eklo, O. M., Gargini, A., Gemitzi, A., et al. (2013). Groundwater pollution and quality monitoring approaches at the European level. Critical Reviews in Environmental Science and Technology, 43(4), 323–408.

    Article  CAS  Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115, F03019.

  • Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 1–6.

    Article  Google Scholar 

  • Bouaziz, M., Matschullat, J., & Gloaguen, R. (2011). Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience, 343(11-12), 795–803.

    Article  Google Scholar 

  • Brodt, S., Six, J., Feenstra, G., Ingels, C., & Campbell, D. (2011). Sustainable agriculture. Nature Education Knowledge, 3(10):1.

  • Chandnani, G., Gandhi, P., Kanpariya, D., Parikh, D., & Shah, M. (2022). A comprehensive analysis of contaminated groundwater: Special emphasis on nature-ecosystem and socio-economic impacts. Groundwater for Sustainable Development, 19, 100813.

  • Datta, B., Vennalakanti, H., & Dhar, A. (2009). Modeling and control of saltwater intrusion in a coastal aquifer of Andhra Pradesh, India. Journal of Hydro-Environment Research, 3(3), 148–159.

    Article  Google Scholar 

  • Davis, E., Wang, C., & Dow, K. (2019). Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. International Journal of Remote Sensing, 40(16), 6134–6153.

    Article  Google Scholar 

  • Etesami, H., & Noori, F. (2019). Soil salinity as a challenge for sustainable agriculture and bacterial-mediated alleviation of salinity stress in crop plants. In Saline soil-based agriculture by halotolerant microorganisms (pp. 1–22). Springer.

    Google Scholar 

  • Fan, X., Zhao, X., Liu, Y., Guo, R., & Liu, Y. (2022). Soil salinity dynamics impairs radiometer-based soil moisture retrieval over global cropland. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9.

  • Fathizad, H., Ardakani, M. A. H., Sodaiezadeh, H., Kerry, R., & Taghizadeh-Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365, 114233.

    Article  CAS  Google Scholar 

  • Feng, D. C., Liu, Z. T., Wang, X. D., Chen, Y., Chang, J. Q., Wei, D. F., & Jiang, Z. M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000.

    Article  Google Scholar 

  • Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2018). Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing, 55(3), 331–354.

    Article  Google Scholar 

  • Gopalakrishnan, T., Hasan, M. K., Haque, A. S., Jayasinghe, S. L., & Kumar, L. (2019). Sustainability of coastal agriculture under climate change. Sustainability, 11(24), 7200.

    Article  Google Scholar 

  • Habibi, V., Ahmadi, H., Jafari, M., & Moeini, A. (2020). Machine learning and multispectral data-based detection of soil salinity in an arid region, Central Iran. Environmental Monitoring and Assessment, 192(12), 1–13.

    Article  Google Scholar 

  • Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.

    Article  Google Scholar 

  • Hassani, A., Azapagic, A., & Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12(1), 1–17.

    Article  Google Scholar 

  • Hemati, M., Hasanlou, M., Mahdianpari, M., & Mohammadimanesh, F. (2021). A systematic review of Landsat data for change detection applications: 50 years of monitoring the earth. Remote Sensing, 13(15), 2869.

    Article  Google Scholar 

  • Islam, K., Singh, B., & McBratney, A. (2003). Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Soil Research, 41(6), 1101–1114.

    Article  CAS  Google Scholar 

  • Jayanthi, M., Ravisankar, T., Nagaraj, G., Thirumurthy, S., Muralidhar, M., & Saraswathy, R. (2019). Is aquaculture abandonment a threat to sustainable coastal resource use?–A case study of Andhra Pradesh, India, with options for reuse. Land Use Policy, 86, 54–66.

    Article  Google Scholar 

  • Kabiraj, S., Jayanthi, M., Vijayakumar, S., & Duraisamy, M. (2022). Comparative assessment of satellite images spectral characteristics in identifying the different levels of soil salinization using machine learning techniques in Google Earth Engine. Earth Science Informatics, 15(4), 2275–2288.

    Article  Google Scholar 

  • Kannan, R., Naidu, K. A., Kanungo, A., Murty, M. V., Avishek, K., & Ramana, K. V. (2022). Hydrochemical Characteristics of groundwater—Assessment of saltwater intrusion along Krishna and Godavari Delta Region, Andhra Pradesh, India. In Geospatial technology for landscape and environmental management (pp. 99–120). Springer.

    Chapter  Google Scholar 

  • Khan, N. M., Rastoskuev, V. V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1-3), 96–109.

    Article  Google Scholar 

  • Klibi, S., Tounsi, K., Rebah, Z. B., Solaiman, B., & Farah, I. R. (2020). Soil salinity prediction using a machine learning approach through hyperspectral satellite image. In 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 1-6). IEEE.

  • Kolli, M. K., Opp, C., & Groll, M. (2020). Mapping of potential groundwater recharge zones in the Kolleru Lake catchment, India, by using remote sensing and GIS techniques. Natural Resources, 11(03), 127.

    Article  Google Scholar 

  • Kolli, M. K., Opp, C., & Groll, M. (2021). Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environmental Earth Sciences, 80(4), 1–14.

    Article  Google Scholar 

  • Kumar, P., Tiwari, P., Biswas, A., & Acharya, T. (2022). Geophysical investigation for seawater intrusion in the high-quality coastal aquifers of India: A review. Environmental Science and Pollution Research, 30, 1–37.

  • Li, J., Gong, X., Liang, X., Liu, Y., Yang, J., Meng, X., & Alhassan, A. (2021). Salinity evolution of aquitard porewater associated with transgression and regression in the coastal plain of Eastern China. Journal of Hydrology, 603, 127050.

    Article  CAS  Google Scholar 

  • Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.

  • Ma, G., Ding, J., Han, L., Zhang, Z., & Ran, S. (2021). Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability, 2(2), 177–188.

    Article  Google Scholar 

  • Matinfar, H. R., Fariabi, A., & Alavipanah, S. K. (2020). Evaluating different spectral indices in identification and preparation of soil salinity mapping of arid region of Iran. Desert, 25(1), 77–85.

    Google Scholar 

  • Muhetaer, N., Nurmemet, I., Abulaiti, A., Xiao, S., & Zhao, J. (2022). A quantifying approach to soil salinity based on a radar feature space model using ALOS PALSAR-2 data. Remote Sensing, 14(2), 363.

    Article  Google Scholar 

  • Nachshon, U. (2018). Cropland soil salinization and associated hydrology: Trends, processes and examples. Water, 10(8), 1030.

    Article  Google Scholar 

  • Nagaraju, T. V., Chaudhary, B., Prasad, C. D., & Gobinath, R. (2023a). Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environmental Pollution, 331, 121924.

  • Nagaraju, T. V., Malegole, S. B., Chaudhary, B., & Ravindran, G. (2022). Assessment of environmental impact of aquaculture ponds in the western delta region of Andhra Pradesh. Sustainability, 14(20), 13035.

    Article  Google Scholar 

  • Nagaraju, T. V., Mantena, S., Azab, M., Alisha, S. S., El Hachem, C., Adamu, M., & Murthy, P. S. R. (2023d). Prediction of high strength ternary blended concrete containing different silica proportions using machine learning approaches. Results in Engineering, 17, 100973.

    Article  CAS  Google Scholar 

  • Nagaraju, T. V., Sunil, B. M., & Chaudhary, B. (2023b). A study on aquaculture waste leachate transport through soil. In Recent trends in civil engineering (pp. 485–491). Springer.

    Chapter  Google Scholar 

  • Nagaraju, T. V., Sunil, B. M., & Chaudhary, B. (2023c). Impact of aquaculture solid waste on environment in the delta region of Andhra Pradesh: A case study. In Indian Geotechnical Conference (pp. 369–374). Springer.

    Google Scholar 

  • Nguyen, K. A., Liou, Y. A., Tran, H. P., Hoang, P. P., & Nguyen, T. H. (2020). Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Progress in Earth and Planetary Science, 7(1), 1–16.

    Article  CAS  Google Scholar 

  • Nguyen, T. G., Tran, N. A., Vu, P. L., Nguyen, Q. H., Nguyen, H. D., & Bui, Q. T. (2021). Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: A case study in Vietnam’s Mekong Delta. Geoderma Regional, 27, e00424.

    Article  Google Scholar 

  • Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1-2), 217–230.

    Article  Google Scholar 

  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers—A review of the state of the art. Geocarto International, 36(9), 957–988.

    Article  Google Scholar 

  • Peng, J., Biswas, A., Jiang, Q., Zhao, R., Hu, J., Hu, B., & Shi, Z. (2019). Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 337, 1309–1319.

    Article  Google Scholar 

  • Pouladi, N., Jafarzadeh, A. A., Shahbazi, F., & Ghorbani, M. A. (2019). Design and implementation of a hybrid MLP-FFA model for soil salinity prediction. Environmental Earth Sciences, 78(5), 1–10.

    Article  Google Scholar 

  • Qi, Y., Huo, Z., Feng, S., Adeloye, A. J., & Dai, X. (2018). Prediction of consumptive use under different soil moisture content and soil salinity conditions using artificial neural network models. Irrigation and Drainage, 67(4), 615–624.

    Article  Google Scholar 

  • Rozema, J., & Flowers, T. (2008). Crops for a salinized world. Science, 322(5907), 1478–1480.

    Article  CAS  Google Scholar 

  • Sangadi, P., Kuppan, C., & Ravinathan, P. (2022). Effect of hydro-geochemical processes and saltwater intrusion on groundwater quality and irrigational suitability assessed by geo-statistical techniques in coastal region of eastern Andhra Pradesh, India. Marine Pollution Bulletin, 175, 113390.

    Article  CAS  Google Scholar 

  • Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2014). Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Regional, 2, 82–90.

    Article  Google Scholar 

  • Shammi, M., Rahman, M. M., Bondad, S. E., & Bodrud-Doza, M. (2019). Impacts of salinity intrusion in community health: A review of experiences on drinking water sodium from coastal areas of Bangladesh. In Healthcare (Vol. 7, 1, p. 50). MDPI.

    Google Scholar 

  • Soni, U., Roy, A., Verma, A., & Jain, V. (2019). Forecasting municipal solid waste generation using artificial intelligence models—A case study in India. SN Applied Sciences, 1(2), 1–10.

    Article  Google Scholar 

  • Tran, D. A., Tsujimura, M., Ha, N. T., Van Binh, D., Dang, T. D., Doan, Q. V., et al. (2021). Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecological Indicators, 127, 107790.

    Article  CAS  Google Scholar 

  • Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., et al. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707, 136092.

    Article  CAS  Google Scholar 

  • Wu, W. (2019). A brief review on soil salinity mapping by optical and radar remote sensing. In: Dagar, J., Yadav, R., Sharma, P. (eds) Research Developments in Saline Agriculture, 53–65.

  • Xiao, C., Ji, Q., Chen, J., Zhang, F., Li, Y., Fan, J., et al. (2023). Prediction of soil salinity parameters using machine learning models in an arid region of northwest China. Computers and Electronics in Agriculture, 204, 107512.

    Article  Google Scholar 

  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 1353691.

  • Yan, L., Roy, D. P., Zhang, H., Li, J., & Huang, H. (2016). An automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sensing, 8(6), 520.

    Article  Google Scholar 

  • Zhang, X., Dong, F., Dai, H., Hu, B. X., Qin, G., Li, D., et al. (2020). Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifers. Hydrogeology Journal, 28(4), 1419–1429.

    Article  CAS  Google Scholar 

  • Zhi, C., Cao, W., Zhang, Z., Li, Z., & Ren, Y. (2021). Hydrogeochemical characteristics and processes of shallow groundwater in the Yellow River Delta, China. Water, 2021(13), 534.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mantena Sireesha: conceptualization, methodology, investigation, validation, writing—original draft preparation. Vazeer Mahammood: conceptualization, methodology, investigation, validation, formal analysis, writing—original draft preparation, writing—review and editing. Kunjam Nageswara Rao: methodology, writing—review and editing.

Corresponding author

Correspondence to Sireesha Mantena.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantena, S., Mahammood, V. & Rao, K.N. Prediction of soil salinity in the Upputeru river estuary catchment, India, using machine learning techniques. Environ Monit Assess 195, 1006 (2023). https://doi.org/10.1007/s10661-023-11613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11613-y

Keywords

Navigation